
GABRIELE

GeneralAgentBased

Repast ImplementedExtensible

Laboratory for Economics

Users Manual

Gianfranco Giulioni

April 24, 2018





To Gabriele





Contents

List of variables iii

List of Parameters vii

I Setting up GABRIELE 1

1 Standard Installation 5

1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Java Development Kit (JDK) . . . . . . . . . . . . . . . . 5

1.1.2 Repast Simphony (RS) . . . . . . . . . . . . . . . . . . . . 6

1.1.3 GABRIELE . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Testing the Installation . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Setup the data loader . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Running GABRIELE . . . . . . . . . . . . . . . . . . . . 12

2 Streamlined Installation 17

2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Java Development Kit (JDK) . . . . . . . . . . . . . . . . 17

2.1.2 Repast Simphony (RS) . . . . . . . . . . . . . . . . . . . . 17

2.1.3 GABRIELE . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Testing the installation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Running GABRIELE . . . . . . . . . . . . . . . . . . . . 20

II Understanding GABRIELE 23

3 The components of the system 27

3.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Goods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Financial assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



ii CONTENTS

4 The Dynamics of Events 33
4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Consumers initialization . . . . . . . . . . . . . . . . . . . 36
4.1.2 Firms initialization . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Banks initialization . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Government and the Central Bank . . . . . . . . . . . . . 42
4.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.6 Technical documentation . . . . . . . . . . . . . . . . . . 43

4.2 The main loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 The process that leads to the consumption of what has

been produced . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Example of consumer-banks relationship . . . . . . . . . . 56
4.2.3 The process that leads to production . . . . . . . . . . . . 59
4.2.4 Examples of firm-bank relationship . . . . . . . . . . . . . 72

III Modifying and developing GABRIELE 77

5 Modifying the code 79
5.1 Learning the current state of development . . . . . . . . . . . . . 79

6 Producing documentation: LATEX, javadoc and UML 81
6.1 LATEXdocumentation . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Additional lists in the table of contents . . . . . . . . . . 81
6.1.2 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Javadoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Unified Modeling Language (UML) . . . . . . . . . . . . . . . . . 83

6.3.1 Class diagrams . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Integrating javadoc with UML class diagrams . . . . . . . 85
6.3.3 Activity diagrams . . . . . . . . . . . . . . . . . . . . . . 85



List of variables

ARf absolute rank of the product made by firm f . 63

BA+ a positive bank account: deposit. 41

BA− a negative bank account: loan. 41

BAa
c the amount allowed by consumer’s c best bank after s/he asked for credit.

52

BAd
f bank account desired by firm f . 65

BAd
c the account desired by consumer c in his best bank when s/he asks for

additional credit. 52

BAab
f bank account allowed by bank b to firm f . 65

BAdb amount of a bank account desired by bank. 50, 62

BAcb bank account of consumer c in bank b. 49, 52

BAfb bank account of firm f in bank b. 40, 62, 65

Bf debt of firm f . Its a liability in the firm balance sheet: Kf = Ef +Bf . 40

Da
c,j expenditure for consumption of good j possible for consumer c considering

his/her financial resources. It is lower than desired consumption for credit
constrained consumers. 53–55

Da
c expenditure for consumption possible for consumer c considering his/her

financial resources. It is lower than desired consumption for credit con-
strained consumers. 53, 55

Da
f,j←c sum of expenditure for consumption received by firm f producing good

j. 54, 64

Da
j←c sum of expenditure for consumption of good j possible for all consumers.

54, 55

De
f demand expected by firm f . 64

iii



iv List of variables

Dd
c,j expenditure on consumption goods j desired by consumer c. 52

Dd
c total expenditure on consumption goods desired by consumer c. 52, 55

Db deposits of bank b. It corresponds to one of the liabilities in the bank balance
sheet: Lb = Eb +Db. 41

Dc,j expenditure for consumption of good j possible for consumer c after real-
location of unsatisfied demand. 55

Dc expenditure for consumption possible for consumer c after reallocation of
unsatisfied demand. 55

Df,j←c expenditure for consumption good received by firm f producing good j
after reallocation of unsatisfied demand. 55, 61, 62

Df,j←f expenditure for investment good received by firm f producing good j.
64, 72

Df←f,j Demand of goods for investment pupose. 61, 71

Dj←c Demand of good j after reallocation of unsatisfied demand. 55

Eb equity base of bank b. It corresponds to one of the liabilities in the bank
balance sheet: Lb = Eb +Db. 41

Ef equity base of firm f . It is a liability in the firm balance sheet: Kf =
Ef +Bf . 40

Kd
f production capital desired by firm f . 64

Kf production capital of firm f . It gives the assets in the firm balance sheet:
Kf = Ef +Bf . 35, 40, 61, 64, 71

Lb loans extended by bank b. It corresponds to assets of the bank balance sheet:
Lb = Eb +Db. 41

RRf relative rank of the product made by firm f . 63

Wf,j Sum of wages payed by firm f producing good j. 61

Y PK
f potential production that could be realized by firm f with the current

level of production capital and no labor constrain. 35

Y PL
f potential production that could be realized by firm f with the current

level of workforces an no production capital constraint. 35

Y P
c potential production of consumer c as a worker. 38

Yf,j→c supply of consumption goods of firm f producing good j. 54, 55, 72

Yf,j→f supply of consumption goods of firm f producing good j. 54, 72



List of variables v

Yf,j production of firm f producing good j. 61, 72

Yf production realized by firm f . 35

Yj→c supply of consumption goods j in the consumption market. 54, 55

αc,j share of expenditure on consumption goods j desired by consumer c. It is
an index of the consumers appreciation for the given item. 52

πf,j economic result of firm f producing good j. A poistive conomic result is
called profit while a negative one is called loss. 61

ψc productivity of consumer c reached during school time. 38

ψf sum of productivities of all workers hired by firm f . 39

ψw,f productivity of worker w hired by firm f . 35, 39, 71

i+ interest rate on bank account with positive amount (deposits). 49, 50, 62

i− interest rate on negative bank account with negative amount (loans). 47,
50, 62

i−sub subsidized interest rate on negative bank account with negative amount
(loans). 50

nc,sye number of successful period of education achieved by consumer c during
its school period. 38, 51

ww,f,j wage of worker w hired by firm f producing product j. 61

ww wage of worker w. 46, 61



vi List of variables



List of Parameters

Kentry target production capital of new entering firms. 68

Θas distribution of the abilities of consumers as students. 36

D̄ Threshold demand below which a firm exit the market. 62

θLMmatch parameter to choose a firms-unemployeds matching mechanism. 69,
70

θLM parameter to affect the average wage on the labor market. This parameter
could be endogenized. 46

θY L parameter of total workers productivity in production function. 35, 38, 42,
46

θabf percentage of new demanded credit Allowed To Firms When Credit Is Not
Completely Allowed. 65

θab share of additional credit allowed to consumers when new asked credit is
not totally allowed. 53

θc,as ability of a consumer as a student. 36, 38

θcea consumer exit age. 37, 71

θdrD depreciation rate of production capital used in production. 61

θdrU depreciation rate of production capital not used in production. 61

θfbncr percentage Of Outstanding Credit Allowed To Firms When Credit Is Not
Completely Renewed. 62

θgmi percentage of demand missed because of goods market imperfections. 54

θis installment share. 50

θmaxas maximum of the ability of a consumer as a student. 37

θmaxbier maximum banks equity ratio at initialization. 41

θmaxcba minimum amount in each consumers’ bank account at initialization. 39

vii



viii List of Parameters

θminas minimum of the ability of a consumer as a student. 37

θminbier minimum banks equity ratio at initialization. 41

θmincba minimum amount in each consumers’ bank account at initialization. 39

θminfier minimum firms equity ratio at initialization. 40

θmnfpe maximum number of failed periods of education after which a student
leaves school. 37, 51

θmnpe maximum periods of school education possible in the system. 37, 38, 51

θnbcc number of bank accounts hold by consumers. 39

θnbfc number of bank accounts hold by firms. 40

θnjasu Number of job application send by unemployed consumers. 69

θprupc percentage of unused production capital that can be sold by the firm on
the unused production capital market. 70

θptbub probability that a non student consumer working state is initialized as
unemployed. 38, 42

θretire workers’ retirement age. 69

prabf firms Probability To Have new demanded credit Completely allowed. 65

prab probability that the additional credit asked by a consumer is totally al-
lowed. 53

prfbren firms Probability To Have Outstanding Debt Completely Renewed. 62

pris probability that an installment share is asked on a bank account with
negative account. 50

prpi probability of a product innovation. 63

ud unemployment dole. 46, 49

wsr wage setting rule. It says which productivity is takes as reference to set
the workers’ wage. 46



Part I

Setting up GABRIELE

1





3

In this part of the manual we describe two ways of setting up for running
simulations. The first one is the standard Repast procedure, where one can
take advantage of various wizards to set up and run simulations. Although
this provides several facilities, some user could feel uncomfortable with this
standard process and would like to revert to a more basic procedure. The
streamlined installation is for these users. It behooves to point out that the
streamlined procedure was especially designed for running the model in the
local machine and in batch mode. Therefore, the supporters of the Unix like
command line interface will appreciate it. To help clarifying, it is worth to
say that the streamlined procedure was developed to avoid the slowness of the
wizards when continuously checking the effects of introducing new lines of code.
It allows to run the model from the command line by typing two keys (i.e arrow
up key - to recall the execution command, and the enter key).



4



Chapter 1

Standard Installation

1.1 Installation

In this section we describe the standard installation process needed to prepare
the system to run simulations. After taking the steps described below, the user
should be able to run the model regardless of the operative system s/he is using.

The model needs Repast Symphony (RS), who in turn needs the Java De-
velopment Kit (JDK). Therefore we need first to check if the JDK is installed
in the system and install it if needed. Once JDK is properly running, we have
to install RS. Finally the model can be installed and run in RS.

1.1.1 Java Development Kit (JDK)

Check the list of installed software to know if JDK is installed in your system.
If yes, note the JDK version. Alternatively, you can open the command line
interface of your system, type javac -version and hit the return key.

Once verified if JDK is installed and, if yes, its version, visit the following
URL:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

to know which is latest released version of JDK.

If JDK is not installed in your system or if it is not at the latest release,
follow the instruction found in the JDK download page to install or upgrade it.
You can also search the internet for alternative ways to install or upgrade the
JDK on your system.

This installation phase is complete when the javac -version command
returns what you expect. If not, you should fist check if the folder containing
the JDK executables are in your execution path and add it manually if needed.
Furthermore, some Linux distribution must be informed on which JDK to use
using the update-alternatives command.

5

http://www.oracle.com/technetwork/java/javase/downloads/index.html


6 CHAPTER 1. STANDARD INSTALLATION

1.1.2 Repast Simphony (RS)

The Repast suite website: http://repast.sourceforge.net has all the infor-
mation needed to download and install RS.

Note that RS is provided as a plugin of the eclipse Integrated Development
Environment. The Repast development team provides a customized version
of eclipse, so you could encounter problems with already installed versions of
eclipse. Note that the streamlined installation provided below show how to
avoid using eclipse.

1.1.3 GABRIELE

GABRIELE has to be installed as an eclipse RS project. We will give hereafter
the instructions to achieve this goal.

First of all, open eclipse.
Suppose your workspace has the following path:

/Users/coolcoder/Documents/workspace

Open the RS perspective (window → open perspective).
Create a new RS project called gabriele (file → new → Repast Simphony

project)
This creates the gabriele folder and a series of sub folders inside the

workspace:
The following figure show the gabriele project folders tree.

Now, the gabriele files have to be added to the just created RS project
folders tree.

We give here two alternatives: via git and using a zipped archive.

http://repast.sourceforge.net


1.1. INSTALLATION 7

Using git

As you probably know, this is a popular way to share code. To fetch GABRIELE
code, a git client need to be installed in your system. Many system comes with
a git client already installed; if it is not your case, you have to install it. Mac
and windows users can consider to install the GitHub Desktop software.

You can verify if git is installed in your system by checking if your command
line interface recognize the git command. If your check is successful, change
directory to the gabriele project folder:
cd /Users/coolcoder/Documents/workspace/gabriele

and type the following commands:

git init

git remote add origin https://github.com/ggiulion/gabriele.git

git fetch origin master

git reset --hard FETCH_HEAD

Then if you plan to make your code changes available on GitHub, add the
command:
git push --set-upstream origin master

Now, the gabriele files should show up in the RS project folders. Refresh
the gabriele RS project with the navigation tab selected in the side bar (file →
refresh) to make them visible in eclipse.

The following figure show how the src sub folder should look like.



8 CHAPTER 1. STANDARD INSTALLATION

Using a zip archive

Point your browser to
https://github.com/ggiulion/gabriele

Click the “clone or download” button and choose “download zip”.

This will download the gabriele-master.zip file in your system.

Unpacking it creates the gabriele-master folder. Move the whole content of
this folder in the gabriele RS project folder:
/Users/coolcoder/Documents/workspace/gabriele/

Choose to overwrite existing files and folders if you will be asked (this will merge
folders). Now refresh eclipse (file → refresh).

1.2 Testing the Installation

First you have to start the RS GUI window. To do so, click on the down black
arrow highlighted by the red circle in the following picture

After clicking, a menu opens as shown by the following figure. Click the
gabriele Model item

After a while, the RS GUI (displayed in the following figure) will show up



1.2. TESTING THE INSTALLATION 9

Check the Data Loaders item in the Scenario Tree. If the Context sub-item
is reported (as in the screen shot above), the model can be run. Otherwise, the
additional settings described in next section are needed.

1.2.1 Setup the data loader

If Data Loaders reports the XML & Model (as in next screenshot)

you have to setup the custom dataloader. As you can see in the scenario
tree under the Data Loaders item, the XML & Model data loader is present.
This must be changed in the custom loader for this model. To do so right click
on the Data loaders item and choose set Data Loader as shown in the following
figures



10 CHAPTER 1. STANDARD INSTALLATION

The following new window will appear

Choose Custom ContextBuilder implementation and click next: A new win-
dow with a proposal will appear.



1.2. TESTING THE INSTALLATION 11

Clicking next will change the window as follows

Click finish.

Now, the previous data loader is replaced by the GABRIELE data loader
(Context) as shown by the following figure



12 CHAPTER 1. STANDARD INSTALLATION

Click on the floppy disk icon to make the change permanent.

1.2.2 Running GABRIELE

There are two ways of running RS models: The GUI and the BATCH mode.

The GUI mode can be of great visual impact because several monitoring
devices continuously updating during the run can be added to the RS GUI
window. The flip side of the coin is that these devices slow down simulation
execution. Second, the simulation runs exclusively in a machine running an X
server. Notwithstanding the GUI mode can be a valid tool during the model de-
velopment. When massive simulations are performed, the BATCH mode should
be used instead. BATCH mode runs are faster because all the graphics elements
are turned off. Furthermore, the absence of graphics makes it possible to run
the model in parallel on several machines. It is worth saying that RS has very
useful facilities for running a model in parallel.

Let us start this section from the very beginning i.e. with the eclipse software
just opened and show how to run the model both in GUI and BATCH mode.

First of all, click on the down black arrow highlighted by the red circle in
the following picture

After clicking, a menu opens as shown by the following figure.



1.2. TESTING THE INSTALLATION 13

The GUI execution is activated by clicking the gabriele Model item, while
the BATCH execution can be started by clicking the Batch gabriele model.

Running in GUI mode

RS GUI window opens by clicking the gabriele Model item. Check if Context
is listed under the Data Loaders item of the scenario tree.

Use the RS GUI window intuitive buttons to interact with the simulation.
A more detailed description on how to control the simulation is given at page
24 “Repast Java Getting Started” document available in RS web site.

The current version of the model has no runtime monitoring graphical el-
ement, so one can check the progress of the simulation watching at the tick
count number in upper right corner of the RS GUI window or looking at the
text output in the console panel of Eclipse window as shown in the following
figure.

On the other hand, GABRIELE record data in text and csv files that will
be created in the model base directory:



14 CHAPTER 1. STANDARD INSTALLATION

/Users/coolcoder/Documents/workspace/gabriele

Data files can be easily identified because their name starts with zdata.

The file zdata_aaa_readme.txt gives a description of the contents of all the
data files.

Running in BATCH mode

Clicking on the Batch gabriele model as in the following figure

activates the batch run configuration wizard.

We point the reader to the “Repast Simphony Batch Runs Getting Started”
document available in RS website for a full description of the wizard.

We only point out that the present version of the model uses custom output
recording techniques. Therefore, the RS File Sink are not used. This implies
that the “Optional Output File Patterns” must be set as in the following figure

This configuration instructs RS to fetch all the file whose name begins with
zdata from all the machines running the model in parallel and move them in
an output sub-folder named batch_date. Needless to say that the sub-folder
name can be chosen at your convenience, and it can be changed at each batch
run in order to avoid overwriting the data (perhaps you want to have memory
of the time of your runs. It is why we add _date to the folder name).

The following figure shows the contents of the model output folder after a
local batch run using Eclipse navigator panel



1.2. TESTING THE INSTALLATION 15



16 CHAPTER 1. STANDARD INSTALLATION



Chapter 2

Streamlined Installation

2.1 Installation

This chapter reports the instructions for installing and running the model in
Unix like Operating Systems using a command line approach. Therefore, the
instructions will be also valid for Linux and recent Mac machines.

The examples and the command line outcomes given below relate to a user
named coolcoder. You should easily be able to adapt the paths to you own
user account.

The following colors are used:
red to denote a command;
blue to denote an ordinary file in command line output;
green to denote an executable file in command line output;
magenta to denote the contents of text files.

2.1.1 Java Development Kit (JDK)

Follow the instructions given in the previous chapter to install or update JDK
if needed.

2.1.2 Repast Simphony (RS)

Also in this case, you can follow the instructions given in the previous chapter.
However, the process therein described implies the installation of eclipse. We
will give here an alternative way to install the RS library and to use it directly.

First of all you have to download all the RS library packages.1

You can download all the jars by using the wget command with the recursion
option (-r).2

1Note that the installation process described in RS web site implies downloading the RS
library and put them in the eclipse plugins folder.

2If the command is not available in your system you have to install it.

17



18 CHAPTER 2. STREAMLINED INSTALLATION

The following steps have to be taken to install RS.
Suppose, for example, you have the directory /Users/coolcoder/abm_java_libraries.

Create the directory
mkdir repast

and move into it
cd repast

Download the files from the RS repository
wget -r -l1 --no-parent -nd --no-check-certificate

https://repo.anl-external.org/repos/repast/plugins/

Some minutes are needed to complete the download.
The directory now should contain many jar files.
Give the following command:

ls *.jar|awk -F’.jar’ ’{print "unzip "$0" -d "$1}’|sh

Each jar file now has the corresponding folder. Remove all the jar files by
typing:
rm *.jar

Now the RS library is installed in your system and is ready to be used. To
test your installation type the command:

java -cp /Users/coolcoder/abm_java_libraries/

repast/repast.simphony.runtime_<version>/lib/*:

/Users/coolcoder/abm_java_libraries/

repast/repast.simphony.runtime_<version>/bin

repast.simphony.runtime.RepastMain

where you have to replace <version> with the version identification number
(for example 2.3.0).

After a while, the RS GUI window should pop up.

2.1.3 GABRIELE

Now you have to choose or create the GABRIELE destination folder. Suppose
it is called models and has the following absolute path:
/Users/coolcoder/models

You can use again the two methods described in the previous chapter (git
or compressed archive) to install the model.

Briefly, using git, change directory in models and give the following com-
mand:

~/models$ git clone https://github.com/ggiulion/gabriele.git

That’s it!
Otherwise, you have to download the zip archive: point your browser to

https://github.com/ggiulion/gabriele

Click on the “clone or download” button and choose “download zip”.



2.2. TESTING THE INSTALLATION 19

This will download the gabriele-master.zip file in your system.
Move the archive in

/Users/coolcoder/models

Unpacking it, the gabriele-master folder is created.
Rename the gabriele-master in gabriele.
Delete the gabriele-master.zip file.

Regardless of the method used, you should have the following directories
tree:

/Users/coolcoder/models/gabriele

/Users/coolcoder/models/gabriele/src

/Users/coolcoder/models/gabriele/docs

/Users/coolcoder/models/gabriele/gabriele.rs

/Users/coolcoder/models/gabriele/scenario

Now, cd into the gabriele directory and get its absolute path

~/models$ cd gabriele

~/models/gabriele$ pwd

/Users/coolcoder/models/gabriele

Save this information because it will be used in the configuration phase.
We will refer to it as the model base directory.

2.2 Testing the installation

2.2.1 Configuration

Create a new directory outside the model base directory.
We will refer to it as the data directory.

Suppose the data directory is called gabriele_data and has the following
absolute path:
/Users/coolcoder/Documents/gabriele_data

cd into the data directory.
Find out the Repast installation directory:

~/Documents/gabriele_data$ sudo find / -name "repast.simphony.core*"

Password:

/Users/coolcoder/abm_java_libraries/repast/repast.simphony.core_2.3.1

In this expression, /Users/coolcoder/abm_java_libraries/repast is repast
base directory and 2.3.1 is repast version.

Prepare a text file named paths.txt having the repast base directory in its
first line, repast version in the second line and the model base directory in the
third line. The file content should look as follows:



20 CHAPTER 2. STREAMLINED INSTALLATION

/Users/coolcoder/abm_java_libraries/repast

2.3.1

/Users/coolcoder/models/modelJasss

You must adapt the paths and the repast version of this file to your settings.
Save this file into the data directory.
Move the configure file from the gabriele scenario folder to the data direc-

tory:
mv /Users/coolcoder/models/gabriele/scenario/configure .

The contents of your data folder is now:

~/Documents/gabriele_data$ ls

configure

paths.txt

Make the configure file executable and run it:

~/Documents/gabriele_data$ chmod +x configure

~/Documents/gabriele_data$ ./configure

This creates three additional files:

~/Documents/gabriele_data$ ls

compile

configure

paths.txt

run_batch

sourcefilespath

Make the compile and run_batch files executable:

~/Documents/gabriele_data$ chmod +x compile

~/Documents/gabriele_data$ chmod +x run_batch

2.2.2 Running GABRIELE

We recall that the streamlined installation was built to run the model in BATCH
mode in a fast way avoiding the slowness of the batch wizard. Therefore we will
only give instruction for the command line batch run.

First of all compile the model by typing:

~/Documents/gabriele_data$ ./compile

The batch run is started with the following command:

~/Documents/gabriele_data$ ./run_batch

When the run completes, you will find the files containing the output of your
simulation inside the data directory. The data file have the zdata_ prefix for
ease of their identification:

~/Documents/gabriele_data$ ls

compile



2.2. TESTING THE INSTALLATION 21

configure

paths.txt

run_batch

sourcefilespath

zdata_aaa_readme.txt

zdata_macro_run_1.csv

zdata_micro_consumers_run_1.csv

zdata_micro_consumersbankaccounts01_run_1.csv

zdata_micro_consumersbankaccounts02_run_1.csv

zdata_micro_consumersbankaccounts03_run_1.csv

zdata_micro_consumersbankaccounts04_run_1.csv

zdata_micro_consumersbankaccounts05_run_1.csv

zdata_micro_consumersbankaccounts06_run_1.csv

zdata_micro_firms_run_1.csv

zdata_micro_firmsbankaccounts01_run_1.csv

zdata_micro_firmsbankaccounts02_run_1.csv

zdata_micro_firmsbankaccounts03_run_1.csv

zdata_micro_firmsbankaccounts04_run_1.csv

zdata_micro_firmsbankaccounts05_run_1.csv

zdata_micro_firmsbankaccounts06_run_1.csv



22 CHAPTER 2. STREAMLINED INSTALLATION



Part II

Understanding GABRIELE

23





25

This model aims at reproducing the dynamics of an economic systems.
The functioning of a dynamic system is described by giving information on

the following elements:

• the components of the systems,

• how they behave and

• how they interact with each other.

Chapter 3 aims at showing the model components.
Chapter 4 describes the dynamics of events. This includes the initialization

phase which is performed just once at the beginning of the simulation and the
sequence of events repeated in each time step.



26



Chapter 3

The components of the
system

Figure 3.1 gives a visual representation of the system components.

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

consumers

students employed unemployed

consumers

students employed unemployed

goods market

product 1 product 2 product 3 · · ·bank account

credit market

lab
or

offi
ce

employment
contract

labor market

unused
production

capital

unused production capital

G
overn

m
en

t

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

Figure 3.1: Components of the economic system

For a systematic description of the system components, we divide them in
the following categories:

• agents;

27



28 CHAPTER 3. THE COMPONENTS OF THE SYSTEM

• goods;

• financial assets.

3.1 Agents

Let us distinguish between multi-instances and single-instance agents.
In this version of the model, Multi-instances agents are

• consumers

• firms

• banks

while single-instance agents are:

• government

• labor office

• Office for statistics

Multi-instances agents are grouped in sectors: the consumers, firms and
banking sectors. Adding the government to these three sectors, we obtain the
usual categorization of the economy into the four institutional sectors: house-
holds, firms, financial sector and public sector. Figure 3.2 highlights the institu-
tional sectors in light blue. The other two single-instance agents are highlighted
in gray: the Labor Office operates in the labor market, while the Office for
Statistics, has a global view of the system. The latter computes aggregate vari-
ables making them available to all the other agents. Furthermore, it uses this
information to moderate the goods and production capital markets.

Figure 3.2 also shows the internal structure of the firms and consumers
sectors.

Consumers are classified in students and non-students. The latter in turn
can be employed and unemployed. Therefore, each consumer of the model falls
into one of the these three groups: student, worker and unemployed.

The internal structure of the firms sector is designed to allow for product
differentiation. In case the researcher is interested in having multiple products,
firms are organized into industries that groups firms making similar item.



3.1. AGENTS 29

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

consumers

students employed unemployed

consumers

students employed unemployed

goods market

product 1 product 2 product 3 · · ·bank account

credit market

lab
or

offi
ce

employment
contract

labor market

unused
production

capital

unused production capital

G
overn

m
en

t

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

Figure 3.2: Components of the economic system: institutional sectors and other
single-instance agents.



30 CHAPTER 3. THE COMPONENTS OF THE SYSTEM

3.2 Goods

In this section we focus on the real part of the model while the financial part is
treated in the next section.

In the present version of the model, the real part of the economy consists in
exchanges of the following items:

• consumption goods

• production inputs

– investment goods

– labor

These items are exchanged in the three corresponding markets highlighted
in gray in figure 3.3.

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

consumers

students employed unemployed

consumers

students employed unemployed

goods market

product 1 product 2 product 3 · · ·bank account

credit market

lab
or

offi
ce

employment
contract

labor market

unused
production

capital

unused production capital

G
overn

m
en

t

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

Figure 3.3: Components of the economic system: real markets.

As explained above, the model allows for product differentiation. It con-
cerns consumption products. We have signaled this possibility by indexing the
products in the goods market.

Firms production capacity can be increased in two ways: by buying existing
unused production capital or by buying newly produced investment goods. To
avoid the complication of including a specific industry producing investment
goods, the following device is used. Investment goods are realized by assembling



3.2. GOODS 31

the existing consumption goods. Therefore, demand for new investment goods
increases the demand in the consumption goods markets. Once assembled, these
goods becomes production capital, and are accounted as assets in the firms
balance sheet. Production capital used in the production process gradually
depreciates. It can happen that a firm has an excess of production capital
(especially in case of a decreasing demand). In this case, the firm can decide to
offer the unused production capital on the corresponding market. Firms having
shortages of production capital, first check for its availability on the market
for unused production capital. If, after these exchanges, additional production
capital is needed, the firm asks for new product in the consumption goods
market. The latter are then assembled to obtain new production capital. On
the other hand, it can happen that the amount of existing unused production
capital is larger than the amount asked on the market. In this case, the exceeding
production capital that cannot be sold gradually depreciates at a depreciation
rate that can be set at a different level to that wearing away the production
capital employed in the production.

Finally, to realize the production, labor is needed. The labor market com-
pletes the set of real markets of this model.

More details on the markets functioning are given in the next part of the
manual.



32 CHAPTER 3. THE COMPONENTS OF THE SYSTEM

3.3 Financial assets

In the previous section we have identified the type of goods in our model. The
identification and specification of financial products to be included in the model
are equally important and are performed in this section.

In the present version of the model, we include the financial contract which
is the cornerstone of nowadays financial systems: the bank account.

In this model, every consumer or firm has at leas one bank account. The
bank account is a convenient modeling device: it can be either used to store
wealth or as a means to obtain credit. In the latter case, the amount on the
bank account will be negative.

Having no other financial contracts, in the present version of the model we
have intermediated finance only. Financial exchanges are thus performed in the
credit market (highlighted in gray in figure 3.4)

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

firms
industry 1

firm 1,1

firm 1,2

firm 1,3

...

industry 2
firm 2,1

firm 2,2

firm 2,3

...

industry 3
firm 3,1

firm 3,2

firm 3,3

...

· · ·

consumers

students employed unemployed

consumers

students employed unemployed

goods market

product 1 product 2 product 3 · · ·bank account

credit market

lab
or

offi
ce

employment
contract

labor market

unused
production

capital

unused production capital

G
overn

m
en

t

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

O
ffi

ce
for

S
tatistics

capital
market

moderator

statistics
computation
department

goods
market

moderator

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

b
an

k
in

g
sy

st
em

bank 1

bank 2

bank 3

...

Figure 3.4: Components of the economic system: the credit market.

Considering additional financial contracts, and therefore adding other finan-
cial markets to the model, is a goal for the near future. This enrichment will
allow the model gradually approach the reality of nowadays financial markets.



Chapter 4

The Dynamics of Events

We start the description by the visual representation of the dynamics of events
given in figure 4.1. The figure shows that after the initialization phase (that will
be detailed in section 4.1) the software enters in the main loop (deeply discussed
in section 4.2). Figure 4.1 gives a brief description of the various events together
with the information on the agent(s) involved in them. To save space we use
the following abbreviations:

• OFS: office for statistics

• G: Government

• CB: Central Bank

• F : firms

• C: consumers

• CS : the subset of consumers that are students

• CE : the subset of consumer that are employed

• CU : the subset of consumer that are unemployed

• B: banks

• LM : labor market

When an event implies a flux from an agent to another, an arrow is added
to give this information. As an example,
C → B: pay back if possible
stands for: Consumers refund banks if possible.

The initialization and the main loop are detailed in the following subsections.

33



34 CHAPTER 4. THE DYNAMICS OF EVENTS

initialization

F
:
m
ake

p
ro
d
u
ction

29
⊲

O
F
S
:
su
b
stitu

te
retired

con
su
m
ers

28
⊲

O
F
S:

com
pute

and
allocate

investm
ents

27
⊲

F: set
production

capital and
bank

account
26

⊲

LM
: match

vacancies and
unemployed

25
⊲

F: hire
24

⊲C
U : send curricula 23

⊲

F: retire and fire workers 22 ⊲

OFS: pe
rform

firm entry
21 ⊲

F:
set

pos
sibl

e in
ves

tment
20

⊲

B→
F:

set
all
ow
ed

cre
dit

19
⊲

F→
B
: s
et
de
sir
ed
in
ve
st
m
en
ts
(a
sk
fo
r
cr
ed
it
if
ne
ed
ed
)

18
⊲

F
→
B
:
pa
y
ba
ck

if
p
os
si
bl
e

17
⊲

B
→
F
:
p
ay

in
te
re
st

an
d
as
k
re
fu
n
d
in
g

16
⊲

O
F
S
:
p
er
fo
rm

fi
rm

s
ex
it

15
⊲

⊳
14

F
:
com

p
u
te

econ
om

ic
resu

lt
an

d
cap

ital
d
ep
reciation

⊳
13

C
→
B
:
com

p
u
te

sav
in
g
an

d
d
ep
osit

th
em

⊳

12
C
:
resize

consum
ption

if
unsatisfied

dem
and

p
ersists

⊳

11
O
FS: satisfy

unsatified
dem

and
if possible

⊳

10
OFS: compute and

allocate desired
demand

⊳

9
C: resize consumption if demanded credit is not allowed

⊳ 8 B→C: set allowed credit

⊳ 7 C→B: set desired consumption (ask for credit if needed)

⊳
6 CS

: step
state

⊳

5
C→

B:
pay

bac
k if p

oss
ible

⊳

4
B→

C:
ac
co
un
t i
nt
ere

st
an
d
as
k
ref
un
din

g

⊳

3
CE

:
pa
y
ta
xe
s
&
C U

re
ce
iv
e
do
le

⊳

2
O
F
S-
G
-C
B
:
fis
ca
l
p
ol
ic
y
de
ci
si
on

an
d
im
pl
em

en
ta
ti
on

⊳
1

C
E
:
re
ce
iv
e
w
ag
e

⊳
0

O
F
S
:
co
m
p
u
te

va
ri
ab

le
s

Figure 4.1: sequence of events



4.1. INITIALIZATION 35

4.1 Initialization

The initialization phase aims at setting firms’ potential production. After this
step, the sequence of events can progress by entering the main loop. During
the initialization process, the stock variables of all agents are set in a consistent
way.

Stock

ConsistencyThe details on the initialization process are given hereafter.
To realize production firms need two production input: capital and labor.

We use the following Leontief type production function:

Yf = min(Y PK
f , Y PL

f ) (4.1)

According to this function, production realized by firm f , Yf , is the minimum
between the potential production that can be realized with the outstanding pro-
duction capital without labor constraints, Y PK

f , and the potential production
that can be obtained by the labor force employed by the firm without capital
constraint, Y PL

f .
The capital potential production is assumed to be equal to the level of capital

(Kf ):
Y PK
f = Kf

Computing the potential production of labor is more tricky because workers
are heterogeneous and have different productivities. We will explain in details
how workers’ productivities are set in the next section when the consumers
initialization will be discussed. For now, it is enough to know that labor is
heterogeneous and that a worker’s productivity will be identified with ψw,f . To
compute the potential production of the workforce employed in a firm, the sum
of workers productivities is first computed:

ψf =
∑

w working in f

ψw,f

Then, we introduce the following
parameter:

read
notation name from
in equations in code value file

θY L parameterOfProductivityInProductionFuncion 100 yes

The potential production of labor is finally computed as:

Y PL
f = θY Lψf .

To arrive at the very first Yf , several preliminary steps, such as initializing
the working state of each consumer, are needed. Some of these steps call for
additional operations such as setting up the various agents balance sheets and
checking for their consistency. In the remainder of this section we sketch the
process, while more details will be given in the following sections.

We adopt the following strategy to set Y PL
f and Y PK

f :



36 CHAPTER 4. THE DYNAMICS OF EVENTS

• compute the potential output from workers

• adjust capital such as the potential output from capital is equal to the
potential output from workers

As already mentioned, the first step implies a preliminary setup of household
working state. The second step, instead, allows the setup of firms assets balance
sheet item.

Knowing firms balance sheet assets, we set the liabilities in such a way that
the balance sheet identity is satisfied.

Next, we initialize the household balance sheet.

Once the amount of households’ and firms banks accounts are known, we
setup banks balance sheets.

So the whole initialization sequence has the following phases:

1. create agents;

2. set consumers working state;

3. compute each firm labor potential production and set the production cap-
ital to a level that allows a potential production equal to that of labor;

4. set agents balance sheet;

5. revise agents balance sheet for stock consistency.
Stock

Consistency
These phases are explained in details in the technical documentation. There,

we present the steps taken for initializing the model in a sequential order. We
also document the above mentioned phases by using UML activity diagrams.

Readers that would not delve into the technical documentation at this point
can progress to the following sections where we discuss deeply the initialization
for each type of agent.

4.1.1 Consumers initialization

Working situation

Students

Each worker is characterized by its fundamental ability. It characterizes each
consumer performance during the education period. The latter in turn deter-
mine the productivity as a worker.

We call this parameter the ability (as) student and denote it θc,as. We set
it during initialization by drawing from a uniform distribution Θas:

Θas ∼ U(θminas, θmaxas)

file:///Users/giulioni/Documents/workspace/gabriele/docs/index_initialization.html


4.1. INITIALIZATION 37

The following parameters are thus used:
read

notation name from
in equations in code value file

θminas Context.minAbilityStudent 0.35 yes
θmaxas Context.maxAbilityStudent 0.5 yes

The most important observation about this parameter is that its upper value
is 0.5.

Another important variable is the consumers age, which is initialized as a
random number between zero and the parameter θcea denoting the retirement
age:

read
notation name from
in equations in code value file

θcea Context.consumerExitAge 70 yes

Using the abilityStudent and the consumerAge the education history of
consumers is initialized. Each year of education is set to successful if that year
uniform random draw u is less that two times the student ability:1

u < 2θc,as

and unsuccessful otherwise. Note that best students has θc,as = 0.5, so they will
be alway successful because 2θc,as = 1. Students with less abilities has lower
probability to be successful.

To initialize the education history we use the following
parameters:

read
notation name from
in equations in code value file

θmnfpe maxNumberOfFailedPeriodsOfEducation 2 yes
θmnpe maxNumberPeriodsOfEducation 21 no

Starting from age 0, the process is repeated until

1. the maximum number of failures admitted (θmnfpe) or

2. the maximum periods of possible education (θmnpe + θmnfpe) or

3. the consumer’s age

1Note how 2θc,as ≤ 1 and u is drawn from a U(0, 1).



38 CHAPTER 4. THE DYNAMICS OF EVENTS

is reached.
We then count the number of successful periods of education, nc,sye.
When the process is stopped by conditions 1 or 2, the consumer state is set

to non students. At this stage, all non students are unemployed. This state will
be revised in the next step. Both the education degree and the productivity as
a worker are assigned using nc,sye.

The degree of education is assigned as follows:

nc,sye degree degree id
0 ≤ nc,sye < 5 none 0
5 ≤ nc,sye < 8 elementary 1
8 ≤ nc,sye < 13 intermediate 2
13 ≤ nc,sye < 16 college 3
16 ≤ nc,sye < 18 bachelor 4
18 ≤ nc,sye < 21 master 5
21 = nc,sye PhD degree 6

The productivity is assigned as follows. Each year of education increases the
consumers ability by a fixed amount. So, the productivity (ψc) assigned to a
consumer with nc,sye successful year of education is

ψc = θc,as + 0.5
nc,sye
θmnpe

Note that θc,as = 0.5 implies nc,sye = θmnpe so that ψc = 1.
Once the productivity of a non student is known, we compute his/her po-

tential production Y P
c as the product of θY L and ψc:

Y P
c = θY Lψc

The education history initialization is stopped by condition 3 when the con-
sumer is young. In this case the subject is assigned the state of student and
its education history will be evolved in the main loop using the rules explained
above.

Employed and unemployed

At this stage all non students are unemployed. Now, some of them will be
employed by firms.

To perform this task we introduce the following parameter:

read
notation name from
in equations in code value file

θptbub Context.probabilityToBe

UnemployedAtTheBeginning 0.2 yes

With probability 1 − θptbub, each non student selects a firm randomly and
send his/her CV to this firm. Subjects who do not send a CV (this happens
with probability θptbub) enter the main loop in the unemployment state.



4.1. INITIALIZATION 39

Initializing consumers bank account

This is the first action performed to setup the consumers balance sheet. Other
actions will contribute to the formation of the consumers’ bank account.

The involved parameters are:
read

notation name from
in equations in code value file

θnbcc Context.numberOfBanksAConsumerCanBeCustumerOf 1 yes
θmincba Context.minConsumerInitialBankAccount −500 yes
θmaxcba Context.maxConsumerInitialBankAccount 500 yes

Each consumer selects randomly a number of banks equal to θnbcc and open
a bank account in each of them. To set the amount of each bank account the
code draw a random integer from a uniform distribution U(θmincba, θmaxcba).
In case the figure is negative the amount is set to zero and the drawn number
is assigned to the demandedCredit variable (it will be managed later in the
initialization process). Non negative number are assigner to the bank account
amount.

As hinted at above, the amount of the various bank accounts will be revised
in the final step of the initialization to ensure all the agents’ balance sheet
consistency.

Stock

Consistency

4.1.2 Firms initialization

Potential production of labor

In the consumers initialization we saw that some non student sent their CV to
firms. So, each firm now has a list of CVs. Each firm employs all the senders
of the CVs that are in the received CVs list. The CV senders state is switched
from unemployed to employed.

As already explained at the beginning of this section, the firm determines the
potential production of its labor force (ψf ) by summing the potential production
of each employee (ψw,f ):

ψf =
∑

w working in f

ψw,f

the potential production is thus

Y PL
f = θY Lψf

Production capital

As we told above, due to the Leontif production function, the production capital
is set in such a way that the potential production from capital is equal to the



40 CHAPTER 4. THE DYNAMICS OF EVENTS

potential production of labor. We have already defined the potential production
of capital as

Y PK
f = Kf

So, the initial level of capital (Kf ) for each firm is set to

Kf = Y PL
f

The level of production

Now that the levels of both production inputs are known, the production made
by each firm is computed by using equation (4.1).

Initialization of firms balance sheet

In the previous step we set up the assets side of the firms balance sheet that is
equal to the production capital.

As explained above, we have two liabilities: equity and bank account. We
set up equity and determine the bank account residually.

To setup equity we use the following parameters:
read

notation name from
in equations in code value file

θminfier Context.minFirmInitialEquityRatio 0.1 yes
θminfier Context.maxFirmInitialEquityRatio 0.3 yes

Each firm equity base (Ef ) is set as follow

Ef = uEfKf

where uEf is drawn from U(θminfier, θmaxfier).
Finally, each firm sets her debt (Bf ) by using the balance sheet identity:

Bf = Kf − Ef

As specified above, debt is obtained through bank accounts. In this version
of the model a firm is costumer of a number of banks given by the following
parameter:

read
notation name from
in equations in code value file

θnbfc Context.numberOfBanksAFirmCanBeCustumerOf 1 yes

Each firm selects randomly a number of banks equal to θnbfc and open a
bank account in each of them. The amount of the bank account (BAfb) is set
to

BAfb = − Bf

θnbfc



4.1. INITIALIZATION 41

4.1.3 Banks initialization

We remember that in this version of the model, we have only one financial
contract: the Bank account (BA). Bank accounts can have a positive amount
or a negative one. Hereafter, we denote a bank account with a positive amount
with BA+ and BA− denotes a negative amount.

To setup the banks balance sheet, we start again from their assets. Bank
assets are households’ and firms financial liabilities. In this version of the model,
financial liabilities are given by negative bank accounts. The sum of negative
bank accounts gives the loans extended by a bank (Lb):

Lb =
∑
f

BA−fb +
∑
c

BA−cb

Given assets of a bank, we setup the its equity (Eb) by using the following
parameters:

read
notation name from
in equations in code value file

θminbier Context.minBankInitialEquityRatio 0.1 yes
θmaxbier Context.maxBankInitialEquityRatio 0.3 yes

A bank equity base is then computed as

Eb = uEbLb

where uEb is drawn from U(θminbieb, θmaxbieb).
Now, the level of deposits (Db) compatible with the balance sheet relation-

ship is computed:
Depb = Lb − Eb

Due to the random elements in the initialization of consumers and firms, the
following stock inconsistency is expected at this stage of the initialization:∑

c customer of b

BA+
cb 6= Depb

Note that only consumers’ positive bank accounts are considered because firms
have no deposits at initialization.

The following revision is performed to restore stock consistency. The amount
of each positive bank account is adjusted as follows:

BA+
cb = BA+

cb

Depb∑
BA+

cb

In this way, stock consistency in each bank balance sheet is restored:
Stock

Consistency∑
BA+

cb = Depb



42 CHAPTER 4. THE DYNAMICS OF EVENTS

4.1.4 Government and the Central Bank

Because we have only the bank account as financial contract, the Government
can finance its deficit by borrowing on its bank account at Central Bank.

The initialization consists thus in opening the Government bank account at
Central Bank and setting its amount. This is the initial level of the public Debt.

Because the aggregate production has not been yet computed, we link this
amount to an estimation of this variable.

Y e
0 = C(1− θptbub)0.5θY L

where C(1 − θptbub) is an estimation of the number of workers and 0.5θY L an
estimation of the average productivity of workers.

4.1.5 Conclusions

At the end of the initialization phase the following results are achieved.
Consumers know if they are student, employed or unemployed. Non students

know their level of productivity. Employed know in which firm they are working.
Firms knows their employees and the level of their production capital. The

supply of goods is thus computed.
All the agents are also endowed with a balance sheet. We think it useful to

look at the following figure which gives a visual representation of the balance
sheet at the sector level. The notation is similar to that used above, but capital
letters in lower scripts are used to denote sectors. So, F denotes the production
sector, B the banking sector and C the consumers sector.

Production sector

Banking sector Consumers sector

KF

BAF

EF

BAF

EB

BA+
C BA+

C

BA−
C BA−

CEB

EF

NWC

Figure 4.2: balance sheets of the various sectors and their relationship

The figure also highlights the coherence of the balance sheets and what this
coherence implies. As one can easily check, the net wealth of the consumers
sector (NWC) is equal to production capital (KF ). Second, the figure shows
that equities of banks and firms make up consumers wealth together with the
more straightforward item represented by deposits.

We pointed out above that the bank account is the sole financial contract
in this model. The accounting is thus performed at the individual level for the
wealth stored in bank accounts. Equities are not represented by shares, thus we
have not a measure of individual wealth hold in shares. The amount of wealth
that is represented by equity is computed at the aggregate level. These aggregate
variables could be taken into account by consumers when taking decisions.



4.1. INITIALIZATION 43

4.1.6 Technical documentation

People who need more details can fint them in the technical documentation.

file:///Users/giulioni/Documents/workspace/gabriele/docs/index_initialization.html


44 CHAPTER 4. THE DYNAMICS OF EVENTS

4.2 The main loop

The main loop can be divided into two parts:

1. the process that leads to the production of goods

2. the process that leads to the consumption of what has been produced

The parts of the main cycle where these two processes develop are highlighted
with colors: in red the consumption process and in violet the production one.
The figure also highlights which markets are interested by the two processes.

4.2.1 The process that leads to the consumption of what
has been produced

We present here the sequence of events and will enter in the details of each item
in the following subsections.

The reader can easily check the correspondence between the numbering of
events in figure 4.3 and that in the following list. The sequence of events is the
following:

1. workers receive wage;

2. Office for statistics, Government and Central Bank implement fiscal policy

• Office for statistics provide data

• Central Bank sets government borrowing limit

• Government decides the tax rate

• workers pay taxes and unemployed receive the dole

• The government bank account at Central Bank is updated

3. banks

• account interest

• ask for loan repayments to indebted consumers;

4. consumers refund if possible (if they have enough financial resources);

5. students update their state

6. consumers compute desired consumption and ask for credit in order to
achieve the desired level

7. banks decide how much credit to allow;

8. Allowed consumption is computed: consumers adjust their desired con-
sumption according to allowed credit.

9. Goods markets open: Office for statistics allocate demand



4.2. THE MAIN LOOP 45

co
n
su

m
p
tio

nP
ro

d
u

ct
io

n
L
a
b
o
r

&
Cap

ita
l mkts

Capita
l&

C
re

d
it

m
k
ts

G
o
o
d

s
&

C
red

it
m

kts

initialization

F
:
m
ake

p
ro
d
u
ction

29
⊲

O
F
S
:
su
b
stitu

te
retired

con
su
m
ers

28
⊲

O
F
S:

com
pute

and
allocate

investm
ents

27
⊲

F: set
production

capital and
bank

account
26

⊲

LM
: match

vacancies and
unemployed

25
⊲

F: hire
24

⊲C
U : send curricula 23

⊲

F: retire and fire workers 22 ⊲

OFS: pe
rform

firm entry
21 ⊲

F:
set

pos
sibl

e in
ves

tment
20

⊲

B→
F:

set
all
ow
ed

cre
dit

19
⊲

F→
B
: s
et
de
sir
ed
in
ve
st
m
en
ts
(a
sk
fo
r
cr
ed
it
if
ne
ed
ed
)

18
⊲

F
→
B
:
pa
y
ba
ck

if
p
os
si
bl
e

17
⊲

B
→
F
:
p
ay

in
te
re
st

an
d
as
k
re
fu
n
d
in
g

16
⊲

O
F
S
:
p
er
fo
rm

fi
rm

s
ex
it

15
⊲

⊳
14

F
:
com

p
u
te

econ
om

ic
resu

lt
an

d
cap

ital
d
ep
reciation

⊳
13

C
→
B
:
com

p
u
te

sav
in
g
an

d
d
ep
osit

th
em

⊳

12
C
:
resize

consum
ption

if
unsatisfied

dem
and

p
ersists

⊳

11
O
FS: satisfy

unsatified
dem

and
if possible

⊳

10
OFS: compute and

allocate desired
demand

⊳

9
C: resize consumption if demanded credit is not allowed

⊳ 8 B→C: set allowed credit

⊳ 7 C→B: set desired consumption (ask for credit if needed)

⊳
6 CS

: step
state

⊳

5
C→

B:
pay

bac
k if p

oss
ible

⊳

4
B→

C:
ac
co
un
t i
nt
ere

st
an
d
as
k
ref
un
din

g

⊳

3
CE

:
pa
y
ta
xe
s
&
C U

:
re
ce
iv
e
do
le

⊳

2
O
F
S-
G
-C
B
:
fis
ca
l
p
ol
ic
y
de
ci
si
on

an
d
im
pl
em

en
ta
ti
on

⊳
1

C
E
:
re
ce
iv
e
w
ag
e

⊳
0

O
F
S
:
co
m
p
u
te

va
ri
ab

le
s

Figure 4.3: sequence of events



46 CHAPTER 4. THE DYNAMICS OF EVENTS

10. Office for statistic satisfies unsatisfied demand if possible.

11. The effective level of consumption is established: it may be less or equal
to the allowed consumption.

12. consumers adjust their bank accounts (deposits and loans) according to
effective consumption.

As for the initialization, these phases are explained in details in the technical
documentation. There, we present the steps of the main loop in a sequential
order and each step is detailed by means of an UML activity diagrams.

We will present hereafter the steps in less schematic more verbal way. In
any case, the UML diagrams can be visualized by a link provided at the end of
each paragraph.

Consumers receive wages

The computation of workers’ wage is less straightforward. The wage each em-
ployed consumer receives is a mark up on the unemployment dole:

ww = ud+ θLMθY Lf(ψ) (4.2)

where:

read
notation name from
in equations in code value file

ud Context.unemploymentDole 30 yes
θLM Context.laborMarketStateToSetWage 0.5 yes

θY L is the parameter of productivity in production function (already defined)
and f(ψ) is a function of workers’ productivity.

Three possibilities for f(ψ) are presently implemented:

1. f(ψ) is the worker’s productivity;

2. f(ψ) is average productivity of workers having the worker’s degree in the
employer’s firm;

3. f(ψ) is average productivity of workers having the worker degree in the
economy.

This leads to three different wage setting rules. One of these rules can be
chosen by means of the following parameter:

read
notation name from
in equations in code value file

wsr Context.wageSettingRule 2 yes

file:///Users/giulioni/Documents/workspace/gabriele/docs/index_loop.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/index_loop.html


4.2. THE MAIN LOOP 47

The researcher can choose which rule to use in a given run by setting the
value of this parameter in the batch_parameters.xml file located in the sce-
nario folder. The possible values that can be specified in the parameter file are:
0, 1 and 2. Their meaning is as follows:

• If value=0 the wage depends on the worker’s productivity.

• If value=1 the wage depends on the productivity of workers employed in
the firm having the same education level of the considered worker.

• If value=2 the wage depends on the productivity of workers having the
same education level of the considered worker in the whole economy.

The UML sequence diagram of this event is available here.

Office for statistics, Government and Central Bank implement fiscal
policy

In this step the Office for statistics, the Government and the Central Bank
interact in a process that will lead each consumer to know his/her disposable
income.

First of all, the Office for statistic computes the figures needed to compute
the public balance: the aggregate taxable income and the aggregate dole to be
payed.

Second, the central bank sets the amount of funds that is willing to borrow
to the government.

Third, the government sets the tax rate that will be charged to workers, wile
the unemployment dole is kept at the consumption subsistence level.

Finally, workers pay taxes and unemployed receive the dole.

Office for statistics compute the taxable income and the number
of unemployed

The aggregate taxable income is given by the sum of wages:

TI =
∑
w

ww

The number of unemployed is denoted with U .

The central bank
First of all the Central Bank charge the interest rate on public debt:

PD = PD(1 + i−)

Then, the Central Bank decides on the credit allowed to Government using
the public debt-production ratio:

pd =
PD

Y

The outcome of the process can be:

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/setWorkersWage.html


48 CHAPTER 4. THE DYNAMICS OF EVENTS

• pd ↑: the Government can increase the debt but the new pd cannot be
higher than pd+ dpd;

• pd =: the Government cannot increase its debt;

• pd ↓: the Government must reduce the pd at least to pd+ dpd.

These events happen with the following probabilities:

pr(pd ↑) = 0.5e−0.69pd

pr(pd =) = pr(pd ↑)
pr(pd ↓) = 1− pr(pd ↑)− pr(pd =)

The following table provides some numerical examples

pd pr(pd ↑) pr(pd =) pr(pd ↓)
0 0.5 0.5 0

0.3 0.4 0.4 0.2
0.6 0.33 0.33 0.33
2.0 0.126 0.126 0.748

It can be easily checked that the probability that the central bank finances a
public deficit decreases with the level of pd while the probability that the Central
Bank insists on the realization of a public surplus increases with pd.

The outcome of the process is thus the pd desired by the central bank:

pdd =

 pd+ dpd with probability pr(pd ↑)
pd with probability pr(pd =)
pd− dpd with probability pr(pd ↓)

Thus, we can compute the desire public debt as

PDd = pddY

and the desired public surplus as

PD − PDd

The government
The government decides the tax rate taking account of the Central Bank rec-

ommendations. However, as we will explain below, sometimes the government
can oppose Central bank.

Fist of all, the government computes the tax rate that satisfies the Central
Bank recommendation by solving τd in the following equation:

PD − PDd = τd TI − d U

This gives

τd =
PD − PDd + d U

TI



4.2. THE MAIN LOOP 49

Setting the tax rate is a little bit tricky. First of all, we observe that the
government can always set a tax rate higher than that desired by the central
bank. Because we exclude that the government increases the consumers’ sacri-
fice, this possibility is applied only when τd < 0. In this case the government
set τ = 0 and uses only a part of the financial resources the Central Bank is
willing to lend.

In the other case, τ is set to τd except when τd is judged too high and the
Government can enforce a lower tax rate. The Central bank suggestion can
be opposed by rejecting its request to be refunded. Fulfilling a Central bank
request of refunding, i.e. reducing the public debt, often causes an increase in
the tax rate. When this increase is judged too high, the government can contain
the increase by partially or totally denying The Central Bank request. In this
case, an unpaid amount will be recorded for the government.

To model this possibility, we introduce a tax rate that the government would
not exceed, τ̄ . We then compute the tax rate that would prevail with no amount
refunded:

τ̃ =
d U

TI

Note that when refunding is asked, τd > τ̃ . Now, when τ̃ > τ̄ the government
cannot reduce the tax rate at the desired level τ̄ and it is forced to sets the tax
rate to τ̃ . When τ̃ < τ̄ < τd the government partially fulfills the Central Bank
requests by setting the tax rate to τ̄ .

So, the tax rate is set as follows:

τ =


0 if τd < 0
τd if τ̃ > τd

τ̃ if τ̄ < τ̃ < τd

τ̄ if τ̃ < τ̄ < τd

Consumers adjust to fiscal policy

Now, the government collects taxes and pays unemployment dole (ud). The
consumers can therefore compute their available income.

Workers’ vailable income is given by ww(1− τ).

Unemployed, receive the dole and pay no taxes, therefore their available
income is equal to the dole.

Students have no income so their available income is equal to zero.

Banks account interests and ask for loan repayments

The accounting of interest updates the households bank accounts. This is done
at different interest rates according to the sign of the bank account (BAcb).

Positive bank accounts are updated using the interest rate on deposits (i+),
so that if BAcb,t ≥ 0

BAcb = BAcb(1 + i+)



50 CHAPTER 4. THE DYNAMICS OF EVENTS

The model has two different interest rates on loans. The ordinary interest
rate (i−) which is charged on bank accounts with negative amount owned by
workers, and the subsidized interest rate i−sub, charged on negative bank accounts
owned by unemployed people and students. Thus, a negative bank account hold
by a workers is updated as follows

BAcb = BAcb(1 + i−)

while if the bank account belongs to a student or an unemployed we will have

BAcb = BAcb(1 + i−sub)

Once the accrued interest has been accounted, the bank may ask the re-
duction of some negative accounts. This involves only the accounts owned by
workers.

The amount of a negative bank account owned by a worker desired by the
bank (BAdb) is determined as follows:

BAdb =

{
BA(1− θis) with probability pris
BA with probability 1− pris

The parameters involved in this computation are:

read
notation name from
in equations in code value file

i+ Context.interestRateOnDeposits 0.001 yes
i− Context.interestRateOnLoans 0.004 yes
i−sub Context.interestRateOnSubsidizedLoans 0.001 yes
θis Context.percentageOfLoanToRefundFor 0.1 yes

IndebtedWorkersIfAsked

pris Context.probabilityToBeAskedToRefund 0.5 yes
ForIndebtedWorkers

The UML sequence diagram of this event is available here

Consumers refund if possible

In the previous step banks can ask to reduce amount of negative bank accounts.
In this model households can have more than one bank account. In principle,

some of them can be positive, and others negative. The downward adjustment
can be asked on some of the negative accounts. Households can face banks re-
funding request using all their financial assets: income (wage) and their positive
bank account.

Households first try to fulfill bank requests by moving funds from positive to
negative bank accounts. If this is not enough, they use their income. However,
income can be used to fulfill banks requests as long as its amount is not lower
than the subsistence level of consumption. In the worst case where banks request

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/updateConsumersAccounts.html


4.2. THE MAIN LOOP 51

cannot be satisfied by using all the available financial resources, the household
consumes the subsistence level of consumption and the bank reduces the negative
amount of the bank account by an amount lower than it would and consequently
record a positive unpaid amount.

The UML sequence diagram of this event is available here

Students update their states

The evolution of a student state follows the process already described in the
initialization (see page 36).

In particular, the current period of education is successful if the new uniform
random draw u is less that two times the student ability:

u < 2θc,as

and unsuccessful otherwise.

If the education period is successful, the number of successful years of edu-
cation (nc,sye) is increased:

nc,sye = nc,sye + 1

and the degree of education is updated according to the table already reported
above:

nc,sye degree degree id
0 ≤ nc,sye < 5 none 0
5 ≤ nc,sye < 8 elementary 1
8 ≤ nc,sye < 13 intermediate 2
13 ≤ nc,sye < 16 college 3
16 ≤ nc,sye < 18 bachelor 4
18 ≤ nc,sye < 21 master 5
21 = nc,sye PhD degree 6

The subject’s productivity is the undated as explained in the initialization sec-
tion:

ψc = θc,as +
0.5

θmnpe
nc,sye

The subject looses his/her state of student

1. in case of a success, if the maximum periods of possible education (θmnpe

+ θmnfpe) or

2. in case of failure, if the maximum number of failures admitted (θmnfpe)

is reached. In these cases, his/her status changes in unemployed.

The UML sequence diagram of this event is available here

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/payBackBankDebt.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/stepStudentState.html


52 CHAPTER 4. THE DYNAMICS OF EVENTS

Consumers compute desired consumption and ask for credit in order
to achieve the desired level

This task is performed by taking the following steps.
Each consumer check her/his income: workers have the wage as an income,

unemployed have the dole and students have no income. Consumers also com-
putes their financial resources by looking at their bank accounts.

Based on this information the desired consumption is computed using a con-
sumption function. In the current version of the model this amount is computed
randomly and it can be higher or lower than the available income.

This allows to compute the desired total level of expenditure of consumption:
Dd

c .
In this model we can have product differentiation. When more than one

product are present, the desired demand for each item (Dd
c,j) is computed as

follows:
Dd

c,j = αc,jD
d
c

where αc,j is an index of the consumers appreciation for the given item. Of
course the condition

∑
j αc,j = 1 must hold.

If the available financial resources are not enough to realize desired con-
sumption, consumers evaluate the possibility to ask for credit. This possibility
is precluded if all the consumers’ bank accounts have a positive unpaid amount.
Otherwise, the consumer asks all the credit needed to the bank with the best
bank account.

Credit is also asked to the bank with the best bank account to satisfy unpaid
amounts that exist in other banks.

The UML sequence diagram of this event is available here.

Banks decide how much credit to allow

In the previous step, consumers who need credit set its desired amount on one of
their bank accounts (the best bank account) having null unpaid amount if such
account exists. Let us identify this variable with BAd

c (where the d upper script
means desired). Because they are asking for credit, this amount is negative:
BAd

c < 0. Note that the best bank account has either a positive or a negative
amount.

In the present version of the model, the bank decides the allowed credit BAa
c

< 0 ( superscript a means allowed) as follows

• if BAcb ≥ 0 and BAd
c < 0

BAa
c =

{
BAd

c with probability prab
θabBA

d
c with probability 1− prab

• if BAcb < 0 and BAd
c < BAcb

BAa
c =

{
BAd

c with probability prab
BAcb − θab(BAcb −BAd

c) with probability 1− prab

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/stepDesiredConsumption.html


4.2. THE MAIN LOOP 53

This does not apply to students to whom the asked credit is always allowed.
We have thus introduced the following parameters:

read
notation name from
in equations in code value file

θab Context.percentageOfCreditAllowedTo

ConsumersWhenCreditIsNotTotallyFunded 0.0 yes
prab Context.consumersProbabilityToGetFunded 0.5 yes

The UML sequence diagram of this event is available here.

Consumers adjust their desired consumption according to allowed
credit

Because there is the possibility that bank does not allow all the demanded credit,
we introduce a new variable: the allowed demand (Da

c ).
This variable can differ from the desired demand only for consumers who

asked for credit an whose request was not satisfied by banks.
Because we can have product differentiation, we first compute the allowed-

desired demand ratio on the whole consumption expenditure:

rdc =
Da

c

Dd
c

Then we scale the demand of each single item by this amount

Da
c,j = rdcD

d
c,j

In this resizing, we do not account of unpaid amounts because we assume
that credit is first used to satisfy consumption. The possible residual is then
used to reduce unpaid amounts.

The UML sequence diagram of this event is available here.

Good markets open: office for statistics computes and allocate desired
demand and satisfy unsatisfied demand if possible

We code the goods market functioning in such a way that both centralized and
decentralized matching mechanisms can be mimicked. In particular, the Office
for Statistic supervise the allocation of demand.

The task is performed by taking the following steps:

• compute the desired allowed demand for each good type;

• allocate it to firms;

• manage unsatisfied demand;

• update firms sales.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/setAllowedConsumersCredit.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/adjustConsumptionAccordingToExtendedCredit.html


54 CHAPTER 4. THE DYNAMICS OF EVENTS

These items are detailed hereafter.
• Compute the allowed demand for each good type. The Office for Statistics
computes the demand of each industry by summing over all the consumers. We
mimic decentralized markets and the losses of exchange opportunities due to
the matching process by introducing the following parameter:

read
notation name from
in equations in code value file

θgmi Context.percentageOfDemandMissed

BecauseOfGoodsMarketImperfections 0.0 yes

The demand of industry producing item j is therefore computed as follows:

Da
j←c = (1− θgmi)

∑
c

Da
c,j

where the← c signal that demand comes from consumers. This notation allows
to identify the various sources of demand that will be introduced below in the
text and in future extensions.

Provided that in the economy there are J industries, the software computes
an array of dimension J : {Da

1←c, · · · , Da
J←c}.

The desired allowed aggregate demand is also computed:

Da
←c =

∑
j

Da
j←c

The UML sequence diagram of this event is available here.
• Allocate desired allowed demand to firms. In this step, the demand computed
in the previous step (Da

j←c) is allocated to the various firms according to their
share of production in the industry they belong to:

Da
f,j←c = Da

j←c

Yf,j→c

Yj→c
(4.3)

It will be clarified in the make production step that firms produce goods that
are sold to other firms (Yf,j→f ) to let them adjust their production capital and
consumption good sold to consumers (Yf,j→c). The just written computation
involves the latter.

The specific step we are discussing allows firms to know the appreciation of
the item they produce among consumers. Note that firms in some industries
may be in a short supply situation (Da

j←c > Yf,j→c) while in other industries
the opposite may hold. This information will be used by firms to guide their
production choices.

The UML sequence diagram of this event is available here.
• Manage unsatisfied demand. In this model we have vertical differentiation.
This means that products with higher j are more advanced and, therefore,
preferred. It may thus happen that demand on these product is higher than

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/computeDesiredDemand.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/allocateDesiredDemand.html


4.2. THE MAIN LOOP 55

supply. In case the demand of a given product cannot be entirely satisfied,
the office for statistics try to fulfill consumers excess demand of this product
with the product that precede it in the quality ladder. The Office for statistic
moves demand across industries starting from the most advanced product and
proceeding backward. This mechanism aims to mimic consumer decision to buy
a less advanced product if the item s/he desires is in short supply.

At the end of this process the demand received by each industry (Dj←c) and
that received by each firm (Df,j←c) is known.

Consumers are then informed of the demand reallocation and their final
demand is computed:

Dc,j = Da
c,j

Dj←c

Da
j←c

The UML sequence diagram of this event is available here.
• Update firms sales. Firms are also informed on the items they have sold:

Df,j←c = Dj←c
Yf,j→c

Yj→c

This information will be then used to compute profit.
Two UML sequence diagrams describe this event. The first one describe the

computation performed by the office for statistics of the demand starting from
the consumer data. This allows a double check on the computation of Dj←c an
is available here. The second one describes the allocation of demand to firms
and is available here.

Consumers adjust their bank accounts (deposits and loans) according
to effective consumption

Summing up, in this model the desired consumption can be resized two times.
The first one when the consumer asks for credit to achieve its desired consump-
tion, but the bank does not allow the demanded credit. In this case we have
that the allowed consumption (Da

c ) is lower than desired consumption (Dd
c ).

The second one is when the asked good is in short supply. In this case, we
say that the effective consumption (Dc) is lower than the allowed consumption
(Da

c ). The effective consumption is computed as follows:

Dc =
∑
j

Dc,j

Once the effective consumption is known, consumers pay the due amounts
to firms. The consumers financial position is adjusted accordingly. Those who
consumes less that their income brings their saving to the bank with the worst
position. Those who were allowed credit decrease their best bank account by
the amount needed to consume. If additional allowed credit remains, it is used
to reduce or cancel the unpaid amounts possibly present in the other bank
accounts.

The UML sequence diagram of this event is available here.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/matchDemandAndSupply.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/computeDemand.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/allocateDemand.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/updateBankAccountAccordingToEffectiveConsumption.html


56 CHAPTER 4. THE DYNAMICS OF EVENTS

4.2.2 Example of consumer-banks relationship

A numerical example of the sequence of action of the above explained process
is given hereafter.

The focus is on an indebted Consumer.
We trace hereafter the steps explained in the manual.

Step 1: interests and loans repayment

In this example, each consumer is customer of three banks.
First of all, banks account the interest rate.
Suppose that after accounting interest rate, the consumer’s bank accounts

have the following amounts:

bank 1 account = 10

bank 2 account = -150

bank 3 account = -50

The bank assumes that indebted consumers (those with a negative bank
account) ask for the whole renewal of the debt:

bank 1 account = 10 demanded credit = 0

bank 2 account = -150 demanded credit = -150

bank 3 account = -50 demanded credit = -50

Each bank with a negative account can ask for refunding. If this happens, the
allowed credit is lower (in absolute value) than the demanded credit. Suppose
banks 2 and 3 intend to reduce their exposition as follows:

bank 1 account = 10 demanded credit = 0 allowed credit = 0

bank 2 account = -150 demanded credit = -150 allowed credit = -130

bank 3 account = -50 demanded credit = -50 allowed credit = -45

In this example, the consumer needs 25 to satisfy banks requests.

step 2: refunding

The consumer refunds her bank account if she has enough income (to refund)
and, in any case, refunds an amount that allows a subsistence consumption level.
Let’s consider this example:

disposableIncome=40

and that the subsistence consumption is 10.
The software first computes the resources available to refund. They are given

by the sum of positive amounts in bank accounts plus the disposable income
minus the subsistence consumption. In this example we have:

resourceAvailableToRefund = 10 + 40 - 10 = 40

These resources are enough to satisfy banks’ requests; the consumer refunds
totally banks because her financial resources allow both debt repayment and a
consumption greater than the subsistence level. Therefore, the new situation is:



4.2. THE MAIN LOOP 57

bank 1 account = 10 demanded credit = 0 allowed credit = 0

bank 2 account = -130 demanded credit = -150 allowed credit = -130

bank 3 account = -45 demanded credit = -50 allowed credit = -45

disposableIncome = 15

Consider now a slightly different situation in bank accounts:

bank 1 account = 15 demanded credit = 0 allowed credit = 0

bank 2 account = -150 demanded credit = -150 allowed credit = -130

bank 3 account = -50 demanded credit = -50 allowed credit = -45

the only difference with the previous situation is that the amount in bank 1 is
15 instead of 10. Suppose furthermore that the consumer’s income is 15 instead
of 40. Now resources available to refund banks (the sum of positive amounts in
bank accounts plus the disposable income minus the subsistence consumption)
are given by:

resourceAvailableToRefund = 15 + 15 - 10 = 20

They are not enough to satisfy banks’ requests (25 is needed). Suppose 15
is used to refund bank 1 and 5 to refund bank 2. Unpaid amounts are recorded
and disposable income is set to allow the subsistence consumption:

bank 1: account = 0 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -135 demanded credit = -150 allowed credit = -130 unpaid = 5

bank 3: account = -50 demanded credit = -50 allowed credit = -45 unpaid = 5

disposableIncome = 10

We continue this example with this second situation.

Step 3: account resetting

In this step, banks set the demanded and allowed credit to zero.
Banks accounts are the updated as follows:

bank 1: account = 0 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -135 demanded credit = 0 allowed credit = 0 unpaid = 5

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 5

disposableIncome = 10

step 4: consumers set desired credit

Now each consumer can asks for new credit. This can be done for two reasons:
1) to achieve a desired consumption higher than disposable income and 2) to
pay unsatisfied lenders.

Suppose now that the consumer would like to consume 20.



58 CHAPTER 4. THE DYNAMICS OF EVENTS

She asks for additional financial resources both to finance consumption (10)
and to pay back bank 2 and 3 (5+5).

The additional credit amount of 20 is asked to one bank. In particular, the
bank with the “best” account (bank 1) is chosen.

bank 1: account = 0 demanded credit = -20 allowed credit = 0 unpaid = 0

bank 2: account = -135 demanded credit = 0 allowed credit = 0 unpaid = 5

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 5

disposableIncome = 10 desiredConsumption = 20

Step 5: credit supply

The bank decides about the amount of loans to give out. Suppose allowed credit
is 18

bank 1: account = 0 demanded credit = -20 allowed credit = -18 unpaid = 0

bank 2: account = -135 demanded credit = 0 allowed credit = 0 unpaid = 5

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 5

disposableIncome = 10 desiredConsumption = 20

Note that the funds now available to the consumers are
disposableIncome + allowed credit=10+18=28

step 6: adjust desired consumption according to allowed credit

In this step, the allowed consumption is introduced and it is given by the dif-
ference between the demanded and the allowed credit. In any case, the allowed
consumption cannot be lower than the subsistence level.

In the example we have

bank 1: account = 0 demanded credit = -20 allowed credit = -18 unpaid = 0

bank 2: account = -135 demanded credit = 0 allowed credit = 0 unpaid = 5

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 5

disposableIncome = 10 desiredConsumption = 20 allowedConsumption = 18

Now, the consumer goes in the goods market trying to satisfy her desired-
allowed consumption. It may happen that goods are in short supply. Suppose
this is the case and she can buy 15 instead of 18.

step 7: the consumer adjust bank accounts

The consumer can thus consume 15. 10 of them are payed with disposable
income and 5 of them are borrowed from bank 1.

Bank 1 is also willing to lend additional resources (18-5=13), so the consumer
uses them to satisfy bank 2 and 3 refunding requests:



4.2. THE MAIN LOOP 59

bank 1: account = -15 demanded credit = -20 allowed credit = -18 unpaid = 0

bank 2: account = -130 demanded credit = 0 allowed credit = 0 unpaid = 0
bank 3: account = -45 demanded credit = 0 allowed credit = 0 unpaid = 0

disposableIncome = 0 desiredConsumption = 20 allowedConsumption = 18

effectiveConsumption = 15

4.2.3 The process that leads to production

The bulk of this process consists in firms’ attempt to adjust inputs to be able to
make the production needed to satisfy the demand expected for the next period.

First of all, firms have to decide the level of production to be realized in the
next period. To this aim, they have two important signals from the present pe-
riod: the level of desired demand from consumers and that from other firms (the
latter relates to investment as we will clarify below). Concerning the demand
from consumers, we recall that the quantity sold by a firm can be different from
that initially demanded by consumers. Indeed, the discussion in the previous
section points out that when a consumer does not find enough goods of a given
type, her/his demand is moved to other goods. However, the firm is informed on
the initial level of demand (that desired by consumers) on the item it produces.
It is thus natural a firm would realize a production equal to the demand initially
claimed by consumers.

Inputs already available to the firm can be higher or lower than those needed
to realize the target production. Inputs excesses are someway easier to manage
than shortages: workers can be fired while a part of the available production
capital can stay unproductive. The upward adjustment is instead more tricky
because several impediments to reach the desired level of inputs can occur.
The level of financial resources, including new available credit, can be the first
constraint to the inputs increase. The availability of the inputs on the market
is a second constraint. Finally, if one of these constraints is binding for one
of the inputs, the demand of the others must be adjusted coherently. Inputs
shortages deserves additional care by making a distinction between inputs that
can be produced and those whose production is not possible or cannot be easily
obtained in the short run.

As already mentioned above, in the present version of the model we have
two inputs: production capital and labor. We treat production capital as “pro-
ducible” while labor as non producible. So when a production capital shortage
is detected, it can be produced to satisfy the shortage. However, the model
checks for the existence of unused production capital before new production
capital is asked. Production capital, as labor, preserves (in full or in part) its
production power when it is moved to another firm. We account for this by
including a market for existing unused production capital. So, firms that needs
additional production capital, first try to buy already existing production goods
that are not used by other firms. Firms that after this adjustment still needs
production capital ask for new production goods to other firms. To keep the
model simple, we assume that production goods are made up of the same goods



60 CHAPTER 4. THE DYNAMICS OF EVENTS

available to consumers, so that, at the end, new investments affect the demand
on the existing goods markets.

The actions leading to production are numerous and not so straightforward.
To ease the understanding of their unfolding it is convenient to refer to the
violet part of figure 4.3. We also report them hereafter as a list. We provide
the reader with a “coarse grain” description with the gray backgrounded items.

• check available financial resources for upward adjustment of production
capital. This phases is performed by taking the following steps:

12. compute the economic result and capital depreciation;

13. perform firms exit;

14. banks account interests and ask for loan repayments to indebted
firms;

15. firms refund if possible;

16. firms step the product innovation process;

- - the software performs a technical step by resetting some variables of
the bank accounts;

17. firms ask for new credit;

18. banks decide how much credit to allow;

19. firms compute investment demand and supply and adjust unpaid
amount if possible.

20. entry of new firms that will ask for production capital.

• Labor force adjustment taking in mind the possible financial constraints

20. Firms perform labor force downward adjustment;

21. Unemployeds send curricula;

22. Perform labor force upward adjustment using decentralized match-
ing;

23. Perform labor force upward adjustment using centralized matching;

• Production capital adjustment taking in mind the possible workers con-
straint

24. Firms try to adjust their production capital on the market for used
production capital;

25. Firms that need additional capital ask for new production goods;

• Consumer turnover

26. perform consumers turnover

• Make production



4.2. THE MAIN LOOP 61

27. firms make production

We will now enter into details of each step. The gray backgrounded headings
will signal when the detailed description leaves one group to enter the next group
of actions.

Check available financial resources

Compute the economic result and capital depreciation

Each firm economic result (πf,j) is computed as follows

πf,j = Df,j←c +Df←f,j −Wf,j

where Df,j←c is demand from consumers, Df←f,j is demand from firms and
Wf,j is the amount of wages payed by the firm.

Wf,j is the sum of the individual wage (ww) payed by the firm to the workers
it employs. We saw above how ww is computed (see equation 4.2), so we can
write

Wf,j =
∑

w in f

ww,f,j

Profit (a positive economic result) can be used to buy production capital
if needed. To see if profit is to be used to buy production capital, we have to
update the state of this variable taking account of its depreciation.

The production capital of the firm is denoted with Kf . We divide this
amount into two parts: the production capital that was employed in the pro-
duction and that which is in excess (if any). Remembering the production
function, the production capital used in the production is Yf,j and the unused
part (if any) is Kf − Yf,j .

In this model, these two parts of production capital have two distinct depre-
ciation rate θdrD and θdrU .

The production capital is thus updated as follows:

Kf = Yf,j(1− θdrD) + (Kf − Yf,j)(1− θdrU )

We have thus defined the following parameters

read
notation name from
in equations in code value file

θdrD Context.percentageOfUsedCapitalDepreciation 0.01 yes
θdrU Context.percentageOfUnusedCapitalDepreciation 0.0 yes

The UML sequence diagram of this event is available here.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/computeEconomicResultAndCapitalDepreciation.html


62 CHAPTER 4. THE DYNAMICS OF EVENTS

Perform firms exit

In this basic version of the model, firms turnover is very simple: each firm that
becomes too small is replaced with a new firm.

In particular, the exit condition is

Df,j←c +Df,j←c < D̄

where we use the following parameter
read

notation name from
in equations in code value file

D̄ Context.thresholdDemandForFirmsExit 20 yes

In this part of the code, the list of new entrants is created but firms are not
yet included in the model. This is because new entrants have to participate in
the production factor markets in order to start the production. The demand for
production capital that will be computed below will account for the demand of
both incumbent and new firms. This will also apply to the labor demand.

The UML sequence diagram of this event is available here.

Banks account interests and ask for loan repayments to indebted firms

The accounting of interest updates the firms bank accounts.
Positive bank accounts are updated using the interest rate on deposits i+,

so that if BAfb ≥ 0
BAfb = BAfb(1 + i+)

Differently from consumers, firms have not a subsidized interest rate, and
negative bank accounts are charged by the ordinary interest rate (i−):

BAfb = BAfb(1 + i−)

Once the accrued interest has been accounted, the bank may ask the reduc-
tion of some negative accounts. The amount of a negative bank account owned
by a firm desired by the bank is thus determined as follows:

BAdb =

{
BAfb with probability prfbren
BAfbθfbncr with probability 1− prfbren

The parameters involved in this computation are:

read
notation name from
in equations in code value file

θfbncr Context.percentageOfOutstandingCreditAllowedTo

FirmsWhenCreditIsNotCompletelyRenewed 0.9 yes
prfbren Context.firmsProbabilityToHaveOutstanding

DebtCompletelyRenewed 0.5 yes

The UML sequence diagram of this event is available here

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/performFirmsExit.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/updateFirmsAccounts.html


4.2. THE MAIN LOOP 63

Firms refund if possible

In the previous step banks can ask firms to reduce amount of negative bank
accounts.

In this model firms can have more than one bank account. In principle, some
of them can be positive, and others negative. The downward adjustment can be
asked on some of the negative accounts. Firms can face banks refunding requests
using all their financial assets: cash flow and their positive bank account.

In case refund is asked on some accounts, the entrepreneur starts checking
its bank account list from the beginning and when s/he find a positive amount
use it to fulfill the other banks refunding requests. If the positive amounts are
not enough, the cash on hand is used. If Even cash on hand is not enough, a
positive unpaid amount is recorded.

The UML sequence diagram of this event is available here

Firms step the product innovation process

Innovation in this model comes into the form of product innovations. We model
this process by introducing the variable ARf which denotes the Absolute Rank
of the good produced by firm f . ARf gives the position of the good in the
quality ladder where higher values denote higher quality.

The product innovation is implemented in a very simple way

ARf =

{
ARf + 1 with probability prpi
ARf with probability 1− prpi

The parameters involved in this computation is:

read
notation name from
in equations in code value file

prpi Context.probabilityOfAProductInnovation 0.0 yes

The UML sequence diagram of this event is available here

We saw above that the office for statistics allocate demand. In doing that it
accounts for goods quality: higher quality attracts more demand. This implies
that firms that do not innovate are penalized. This can lead less advanced
products to disappear.

As time passes, a prpi > 0 implies that absolute ranks of the products
that are exchanged in the economy always increase. Because low ranked goods
disappear, we introduce the Relative Rank RRf to perform computation. It is
defined as:

RRf = ARf −min(ARf ) + 1

In this way, even if the absolute rank of the less advanced good that is
exchanged at a given time (min(ARf )) increases, its relative rank is alway 1.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/firms_payBackBankDebt.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/stepProductInnovatioProcess.html


64 CHAPTER 4. THE DYNAMICS OF EVENTS

Consider for example companies producing smart phones. Suppose we iden-
tify these companies with uppercase letters A, B, C and so on. Suppose fur-
thermore that they name their product by the company name and the absolute
rank of the product. Suppose the variety of smart phones available on the mar-
ket is A6, B6, C5. We can compute the relative rank as explained above. The
following table reports the situation

f product ARf RRf

A A6 6 2
B B6 6 2
C C5 5 1

Suppose company A launches its new A7 smart phone. The previous table
evolve as follows

f product ARf RRf

A A7 7 3
B B6 6 2
C C5 5 1

After the introduction of this new product, consumers see C5 outdated. So
company C either exits from the market or succeeds in innovating and launches
the C6. In both cases, the relative rank is updated:

if C exits if C innovates

f product ARf RRf

A A7 7 2
B B6 6 1

f product ARf RRf

A A7 7 2
B B6 6 1
C C6 6 1

Firms ask for new credit

Firms may need new credit to increase the level of their production capital or
to pay residual unpaid amounts on banks accounts.

First, a firm evaluates if it has to increase its production capital. In doing
that it has to forecast the level of next period demand. We know there are two
sources of demand: from consumers and from firms. To forecast the consumers
demand, the firm uses the desired-allowed demand Da

f,j←c as computed in equa-
tion 4.3. The demand from other firms is assumed to be equal to that received
in the previous period. The demand expected by the firm is thus

De
f = Da

f,j←c +Df,j←f

Now, remembering the production function, we have that the desired level of
production capital is:

Kd
f = De

f

If
Kd

f > Kf



4.2. THE MAIN LOOP 65

financial resources are needed to make the desired adjustment. The firm checks
its internal financial resources, i.e. cash on hand and positive bank accounts
and, if they are not enough, asks for credit.

If existing production capital is enough to produce the expected demand,
credit could be also needed; this happen if unpaid amounts exist.

If credit is needed, the entrepreneur checks the possibility to ask it to the
banks it is customer of. This possibility is prevented if positive unpaid amount
are present in all the firm’s bank accounts. If one or more bank accounts have
no unpaid amount, the entrepreneur choses the bank account having the best
account to ask new credit. When searching for the best bank account, the code
also identifies the worst bank; it will be used to deposit the residual cash on
hand that possibly remains at the end of the adjustment process.

The UML sequence diagram of this event is available here

Banks decide how much credit to allow

In the previous step, firms who need credit set the desired amount on one (the
best) of their bank accounts having null unpaid amount if such account exists.
Let us identify this variable with BAd

f (where the d upper script means desired).

Because they are asking for credit, this amount is negative: BAd
f < 0. Note

that the best bank account con have either a positive or negative amount.
In the present version of the model, the bank decides the allowed credit BAab

f

< 0 (allowed by bank to f irm) as follows

• if BAfb ≥ 0 and BAab
f < 0

BAab
f =

{
BAd

f with probability prabf
θabfBA

d
f with probability 1− prabf

• if BAfb < 0 and BAab
f < 0

BAab
f =

{
BAd

f with probability prabf
BAfb − θabf (BAfb − BAd

f ) with probability 1− prabf

We have thus the following parameters:

read
notation name from
in equations in code value file

θabf Context.percentageOfNewDemandedCredit

AllowedToFirmsWhenCreditIsNot

CompletelyAllowed 0.9 yes
prabf Context.firmsProbabilityToHaveNewDemanded

CreditCompletelyAllowed 0.5 yes

The UML sequence diagram of this event is available here

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/setDesiredCredit.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/setAllowedFirmsCredit.html


66 CHAPTER 4. THE DYNAMICS OF EVENTS

Firms compute investment demand and investment supply; they ad-
just unpaid amount if possible

The following variables are managed in this step

• firmInvestment,

• cashOnHand,

• promissoryNotes,

• unpaidAmount

The way they are managed depends on the outcome of the previous steps.
Because there are a variety of possible states a firm can be at this stage, we will
give here a selection of examples starting from bad to good situations.

In the worst case,

• the firm suffered a loss;

• available financial resources are not enough to cover it;

• a bank that lend money cannot be found;

• one or more banks ask for refunding.

In this case we allow the firm to issue promissory notes that are delivered to
consumers. These promissory notes will be payed in the future whenever pos-
sible. It is highly probable that the loss is caused by a fall in demand, so that
the firm want to decrease its production capital. The variables listed above will
probably be as follows:

• firmInvestment < 0,

• cashOnHand = 0,

• promissoryNotes > 0,

• unpaidAmount > 0

In another difficult situation the firm has profits and positive bank accounts
that are not enough to pay back the bank. In this case the firm end up with
positive unpaid amounts:

• firmInvestment < 0,

• cashOnHand = 0,

• promissoryNotes = 0,

• unpaidAmount > 0



4.2. THE MAIN LOOP 67

A better situation is the one in which the fall of demand is not so heavy to
cause a loss:

• firmInvestment < 0,

• cashOnHand > 0,

• promissoryNotes = 0,

• unpaidAmount = 0

A promising situation is that in which the level of demand increase so that
the firm want to invest and it has a positive economic result. Here we can dis-
tinguish between the case in which the cash on hand is not enough to finance
investments:

• firmInvestment>cashOnHand+sum of positive banck accounts > 0,

• promissoryNotes = 0,

• unpaidAmount = 0

and the case in which the cash on hand is higher than investments:

• firmInvestment<cashOnHand+sum of positive banck accounts > 0,

• promissoryNotes = 0,

• unpaidAmount = 0

In the latter case the cash on hand in excess is deposited in the worst bank
account.

Even though the variety of cases presented is incomplete, it can be used to
star reasoning on the supply and demand of production capital.

It is straightforward that entrepreneurs who want to disinvest, i.e. those
having firmInvestment < 0 are offering their production capital excesses in
the used production capital market. However, as we will see in one of the
following step, the sum of these desired disinvestments cannot be considered as
the supply in the existing production capital market. This is because we have
to take into account the possibility of existing production goods to be used by
other firms. In other words we have to account for the degree of investment
reversibility.

The demand of new production capital is affected by the credit supply. At
the current state, some firm asked for new credit while other do not. Those
which asked for, now know the amount of credit the best bank (if it exists)
is willing to allow. Therefore, they can check if the available credit is enough
to cover their losses or to realize the desired investments. Firms that want to



68 CHAPTER 4. THE DYNAMICS OF EVENTS

invest, both those who asked for credit and those who do not, now know the level
of investments they could achieve according to the available financial resources.
However, even though the firm has enough financial resources we cannot set the
amount of investment demand at this stage: firms have first to check for the
availability of workers. If the needed workers will not be found, the desired level
of investment will be resized. Therefore, the demand of investments will be set
in a later step.

The UML sequence diagram of this event is available here

Entry of new firms that will ask for production capital

In the previous step we computed the potential demand and supply of produc-
tion capital by incumbent firms. However, the demand of production capital
must be integrated with that of firms that intend to enter the market. The
entering of new firms also impacts on banks because they are involved in the
financing of these new activities. Furthermore, the new entries modifies the
position each firms has on the goods market because it will attract a share of
demand.

All these aspects are managed in this step. In particular, the desired size of
each new firm is a parameter:

read
notation name from
in equations in code value file

Kentry Context.productionOfNewEnteringFirm 50 yes

This amount is also identified as firmInvestment and thus enters in the
demand for production capital.

New firms thus opens a number of bank accounts and ask for funds to fi-
nance the new investment to one of these banks (the fist one created for coding
convenience). The bank allows for all the credit asked by a new firm.

Like incumbent firms, the production capital of new entrants will be resized
in case of a work force shortage.

The UML sequence diagram of this event is available here

Labor force adjustment

Firms perform labor force downward adjustment

The downward adjustment of the labor force has two motivations:

• workers retirement;

• excess of labor production capacity with respect to the expected demand.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/setPossibleInvestment.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/performFirmsEntry.html


4.2. THE MAIN LOOP 69

Concerning retirement, the software checks each worker’s age against the
parameter:

read
notation name from
in equations in code value file

θretire Context.ConsumerExitAge 70 yes

The check is made by each firm, and if the worker’s age is higher than the
retirement age, the worker is removed from the workers list.

Once, retirement is performed, the firm computes its workers production
capacity. If it is higher than the demand expected for the next period, the firm
fire workers starting from the bottom of its workers list i.e. adopting a last in,
first out method. The firm continue firing until firing an additional worker will
bring the workers production capacity lower than the expected demand.

The UML sequence diagram of this event is available here

Unemployeds send curricula

The way Unemployed people send curricula depends on the labor market match-
ing mechanism. The latter can be chosen by setting the following parameter:

read
notation name from
in equations in code value file

θLMmatch Context.FirmsWorkersMatching 0 yes

It can be set as follows:
0 perform a decentralized mechanism only;
1 perform first a decentralized matching followed by a centralized allocation of
residual vacancies;
2 perform a centralized matching only.

If the decentralized matching mechanism is involved (cases 0 and 1), unem-
ployed consumers are allowed to select a number of firms given by the parameter:

read
notation name from
in equations in code value file

θnjasu Context.numberOfJobApplicationAnUnemployedSends 2 yes

and send to each of them the curriculum.
If the centralized matching mechanism is involved (cases 1 and 2), unem-

ployed consumers send their curriculum to the labor office.
So, in case 0, unemployed consumers send θnjasu curricula, in case 1 they

send θnjasu +1 curricula while in case 2 they send just one curriculum.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/laborForceDownwardAdjustment.html


70 CHAPTER 4. THE DYNAMICS OF EVENTS

The UML sequence diagram of this event is available here

Perform labor force upward adjustment

In this step, firms that want to increase their production try to hire new workers.
At this stage they know the level of production capital that can be achieved
given the credit allowed by banks. The attempt here is to line up the workers
production capacity to the capital production capacity allowed by banks.

Workers search mechanisms depends on the matching mechanism chosen (the
θLMmatch parameter presented in the previous paragraph). If the decentralized
matching mechanism is involved (cases 0 and 1), each firm hires among those
who sent the curriculum to it (those who were already hired by other firms are
not considered by the firm).

In case 1, the residual vacancies are posted to the labor office, while in case
2, all the vacancies are posted. The Labor office will try to fill the vacancies.

The UML sequence diagram of this event is available here

Production capital adjustment

Firms try to adjust their production capital on the market for used
production capital

As explained above, it can happen that workers production capacity and poten-
tial production capital cannot be lined up because of workers shortage. In this
case, the capital production capacity, and hence investment demand, is resized
to meet the workers production capacity.

After this resizing, the demand of production capital can be finally com-
puted.

The UML sequence diagram of this event is available here

Next, the code checks for possible adjustments on the market for existing
unused production capital.

First of all, there is a parameter that transforms unused production capital
into reusable production capital.

read
notation name from
in equations in code value file

θprupc Context.percentageOfRealized

UnusedProductionCapital 0.9 yes

The sequence of events to adjust the production capital is as follows

• computation of aggregate investments and aggregate unused capital;

• unused capital is transformed in reusable production capital;

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/sendJobApplications.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/laborForceUpwardAdjustment.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/adjustProductionCapitalAndBankAccount.html


4.2. THE MAIN LOOP 71

• reusable production capital is used to satisfy aggregate investments;

• firms that sold unused capital reduce their available production capital
and increase their worst bank account;

The UML sequence diagram of this event is available here.

Firms that need additional capital ask for new production goods

If the demand for investments cannot be completely fulfilled by the reusable
production capital, firms ask for newly produced investment goods. We denote
this variable with If . Summing over f we get the aggregate demand of new
production goods

I =
∑
f

If

The office for statistics is charged for allocating such source of demand.
Because it also has the role of allocating the aggregate demand from consumers,
the easiest way to proceed is that of using the same allocation method. From
this process, each firm will know the demand from other firms, Df←f,j , that
will be added to that from consumers.

The UML sequence diagram of this event is available here

Consumer turnover

Consumer turnover is managed in a very simple way. When a consumer reaches
the maximum age θcea s/he is replaced with a new one having age equal to zero.
The new consumers inherit the bank accounts of the exited consumer.

The UML sequence diagram of this event is available here

Make production

Now that firms have performed the possible adjustments on the production
capital and labor market, they are ready to perform production.

After the adjustments each firm knows its available production capital (Kf )
and the set of productivities of the workers it hired (ψw,f ).

This allows the computation of both the production capital potential pro-
duction and the labor force potential production following the equations given
in the initialization section (page 35):

Y PK
f = Kf and Y PL

f = θY L

∑
w

ψw,f

Finally, the firm output is computed using the Leontief type production
function (equation 4.1):

Yf = min(Y PK , Y PL)

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/computeInvestments.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/allocateInvestments.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/performConsumersTurnover.html


72 CHAPTER 4. THE DYNAMICS OF EVENTS

Now, we know that the demand for investment goods Df,j←f is satisfied in
full before that of consumers. We can think investments products are ordered,
and the market for these goods always cleans: Df,j←f = Yf,j→f . This allows
us to compute the supply of consumption goods:

Yf,j→c = Yf,j − Yf,j→f

The UML sequence diagram of this event is available here

Now we are ready to go again through the process that leads to consumption.
However, as mentioned above, new entry of firms changes the market power of
incumbents. Thus, a step done before the aggregate demand is allocated is the
update of such market shares.

The UML sequence diagram of this event is available here.

4.2.4 Examples of firm-bank relationship

A numerical example of the sequence of actions for a firm in bad economic
conditions is given hereafter.

Bad condition

Step 1: interests and ask for repayments

Firms can be customers of several banks.
First of all, the banks account the interest rate.
Suppose that after accounting interests we have the following situation

bank 1 account = 10

bank 2 account = -150

bank 3 account = -50

The bank assumes that indebted firms ask for the whole renewal of the debt:

bank 1 account = 10 demanded credit = 0

bank 2 account = -150 demanded credit = -150

bank 3 account = -50 demanded credit = -50

Each bank with a negative account can ask for refunding. In this case the
allowed credit is lower (in absolute value) to the demanded credit. Suppose
bank 2 asks for refunding and bank 3 does not:

bank 1 account = 10 demanded credit = 0 allowed credit = 0

bank 2 account = -150 demanded credit = -150 allowed credit = -130

bank 3 account = -50 demanded credit = -50 allowed credit = -50

In this example, the firm needs 20 to satisfy banks requests.

file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/makeProduction.html
file:///Users/giulioni/Documents/workspace/gabriele/docs/umldoc/setupNewFirmsToComputeProductAttractiveness.html


4.2. THE MAIN LOOP 73

Step 2: refunding

The possibility to refund depends on the resources available on banks and on
the economic result. In our example, 10 is available in bank 1.

To go on with our example, let us assume that the economic result is -50

i.e. the firm is suffering a loss.
The firm use 10 available in bank 1, but it is not enough to satisfy banks

requests. Shortages are recorded as unpaid amounts.
The firm financial situation is represented as follows

bank 1: account = 0 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -140 demanded credit = -150 allowed credit = -130 unpaid = 10

bank 3: account = -50 demanded credit = -50 allowed credit = -50 unpaid = 0

cashOnHand = -50

Step 3: account resetting

In this step, banks set the demanded and allowed credit to zero.
The new situation is

bank 1: account = 0 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -140 demanded credit = 0 allowed credit = 0 unpaid = 10

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = -50

Step 4: set desired credit

Now the firm can ask for new credit. This can be done for two reasons: 1) to
finance new investments and 2) to pay unsatisfied lenders.

Suppose now that our firm does not invest, and asks for credit to pay un-
satisfied lenders.

Credit in this step is asked to one of the banks, in particular to that with
the “best” account.

In this example, the new asked credit is 10+50=60. The update situation is

bank 1: account = 0 demanded credit = -60 allowed credit = 0 unpaid = 0

bank 2: account = -140 demanded credit = 0 allowed credit = 0 unpaid = 10

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = -50

Step 5: credit supply

The bank now decides the allowed credit.
The situation evolves differently according to the allowed amount.
We will present here two situations.



74 CHAPTER 4. THE DYNAMICS OF EVENTS

In the firs one, the bank allows all the demanded credit. In this case the
accounting evolves as follows

bank 1: account = 0 demanded credit = -60 allowed credit = -60 unpaid = 0

bank 2: account = -140 demanded credit = 0 allowed credit = 0 unpaid = 10

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = -50

In the second situation, the bank allows only 30 of the 60 that was asked.
In this case the accounting is

bank 1: account = 0 demanded credit = -60 allowed credit = -30 unpaid = 0

bank 2: account = -140 demanded credit = 0 allowed credit = 0 unpaid = 10

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = -50

Step 6: the firm adjust bank accounts

The resources made available by bank 1 are used and the situation evolves as
follows.

If the allowed credit = -60, the new credit is enough to pay the unpaid
amount to bank 2 and to cover the loss:

bank 1: account = -60 demanded credit = -60 allowed credit = -60 unpaid = 0

bank 2: account = -130 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = 0

If the allowed credit = -30, new credit is not enough. The entrepreneur
now uses the 30 to partially cover the loss. The residual loss is covered by
issuing promissory notes. The unpaid amount remains in bank 2:

bank 1: account = -30 demanded credit = -60 allowed credit = -30 unpaid = 0

bank 2: account = -140 demanded credit = 0 allowed credit = 0 unpaid = 10

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = 0 promissoryNotes=20

A numerical example of the sequence of action for a firm in good economic
conditions is given hereafter.



4.2. THE MAIN LOOP 75

Good conditions

Step 1: interests and repayments

Suppose we start from the same conditions as in the bad case.

There are no differences in the evolution of this step, so that the situation
at the end of this step is the same:

bank 1 account = 10 demanded credit = 0 allowed credit = 0

bank 2 account = -150 demanded credit = -150 allowed credit = -130

bank 3 account = -50 demanded credit = -50 allowed credit = -50

Step 2: refunding

Good conditions here means that the firm realized a profit and thus has a
positive cash on hand, say

cashOnHand = 50

20 of them are used to refund the bank. So, now, the situation is

bank 1: account = 10 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -130 demanded credit = -150 allowed credit = -130 unpaid = 0

bank 3: account = -50 demanded credit = -50 allowed credit = -50 unpaid = 0

cashOnHand = 30

Step 3: account resetting

bank 1: account = 10 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -130 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = 30

Step 4: set desired credit

Imagine now, the firm had a production capital equal to 100 before starting
production.

Suppose production depreciates capital to 95.

Furthermore, suppose the firm expects an increase of demand and wants to
increase its production capital to 110.

So, to bring production capital to the desired level 15 is needed.

Checking financial resources available internally the firm conclude that it
can achieve the objective without asking to banks.

Furthermore there is an inconsistency in firms bank accounts: the positive
one should be used to reduce the negative ones. The software at this stage with-
draws positive bank accounts and store them in the variable financialResourcesInBankAccounts:



76 CHAPTER 4. THE DYNAMICS OF EVENTS

bank 1: account = 0 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -130 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = 30 financialResourcesInBankAccounts = 10

Step 5: credit supply

In this step no change is performed because credit was not asked.

Step 6: adjust production capital and banks accounts

Production capital is adjusted by using internal financial resources.
So, after this step we have
productionCapital=110

cashOnHand + financialResourcesInBankAccounts = 25

finally, the residual internal funds are used to improve the “worst” bank
account:

bank 1: account = 0 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 2: account = -105 demanded credit = 0 allowed credit = 0 unpaid = 0

bank 3: account = -50 demanded credit = 0 allowed credit = 0 unpaid = 0

cashOnHand = 0 financialResourcesInBankAccounts = 0



Part III

Modifying and developing
GABRIELE

77





Chapter 5

Modifying the code

Modifying an existing code is a demanding task because the developer needs
information distributed in several thousands lines of code.

Even an open source code ends up to be proprietary if it is not properly
documented.

Because GABRIELE is provided with a collaborative intent, a particular
care was dedicated to providing a documentation allowing new developers to
easily understand where the code has to be modified.

5.1 Learning the current state of development

The reading of the above material of this document gives the idea of the state
of development. However, developers need something more detailed. This more
detailed information is included in the docs folder of GABRIELE distribution.

Opening the index.html file using a browser, a web page with four sections
is displayed.

The four sections are

• PDF;

• Relationships among agents (classes)

• UML activity diagrams for the sequence of events

• javadoc API

The PDF section points to the present manual. Javadoc API documentation
is standard, while the other two items represents unusual efforts in software
documentation.

The relationship among classes presents an UML diagram showing GABRIELE
classes and the relationships among them. This represents a useful hint for un-
derstanding the software components, however, the bulk of the insights can be
obtained in the UML activity diagrams for the sequence of events section.

79



80 CHAPTER 5. MODIFYING THE CODE

The latter presents the sequence of actions for both the initialization (giving
a more detailed description of what presented in Section 4.1) and the main loop
(giving a more detailed description of what presented in Section 4.2).

For each of these action a link to an UML activity diagram is provided. UML
activity diagrams give a visual representation of the code and allow developers
to easily pinpoint where the code should be modified in order to obtain the
desired result.



Chapter 6

Producing documentation:
LATEX, javadoc and UML

6.1 LATEXdocumentation

The LATEXtypesetting system is used to produce the GABRIELE manual.
All the files needed to obtain the electronic version of the manual are in the

docs/latexdoc folder.
The manual source file is named manual.tex

In the following subsection we report on the various tools used to produce
the additional elements that are integrated into the main file.

6.1.1 Additional lists in the table of contents

The glossaries package is used to produce the additional lists to be included
in the table of contents.

Here we will briefly explain how it works. First of all a new glossary must
be created. In the following example, the glossary called variable is created:

\usepackage[toc]{glossaries}

\newglossary[nlg]{variable}{vin}{vot}{List of variables}

The glossary entries are defined in a separate file that will be included in
the main document. Suppose the entries for the variable are created in the
glossary_notation_variables.tex file.

The entries definitions are imported in the preamble with the following com-
mand
\input{glossary_notation_variables}

Glossaries entries definition format is as follows:

\newglossaryentry{var:WWf}% label

{

81



82CHAPTER 6. PRODUCINGDOCUMENTATION: LATEX, JAVADOCANDUML

type=variable,% glossary type

name={$WW_{f,j}$},

description={Sum of wages payed by firm $f$ producing good $j$}

}

Note that the type entry must report the glossary name.
Once the glossary entry is defined in the glossary_notation_variables.tex

file, it can be used in the main document. To do that, the \gls{glossary entry label}

must be used. In our case, for example we can write:
where \gls{var:WWf} denotes the sum of wages ...

Finally, the \printglossaries command must be included in the main file
to make the defined glossaries show up.

An additional compilation step is needed to generate the glossaries.
Once compiled a first time using the pdflatex command, the manual.ist

file is created. Now give the command
makeindex -s manual.ist -o manual.vin manual.vot

to generate the auxiliary files taken as input by the following pdflatex runs.
Note that we defined the extension of the files used in the makeindex command
in the \newglossary line options.

Presently, we have created two glossaries, one for variables and one for
parameters. To simplify the updating of the auxiliary files, we create the
makeglossaries script. So, to update the master document when a new glos-
sary entry is created and cited, enter the following commands in the command
line:

pdflatex manual.tex

./makeglossaries

pdflatex manual.tex

pdflatex manual.tex

6.1.2 Figures

Some figures (for example 3.1-3.4) are obtained by using metapost. The meta-
post work flow is as follows: metapost code is written in an ascii file. Once
finished, the file is compiled with the mptopdf command. If the command is
not in the system it can be installed. Alternatively, the final pdf can be obtained
by fist compiling with the mpost command and then converting the output using
epstopdf. Therefore, to modify these figures, you have to edit the correspond-
ing mp source file an recompile it.

Figures 4.1 and 4.3 are also obtained as metapost output, but the process
is more structured to ease possible changes. The complication of this figure is
that events are represented as evenly spaced sun rays. Imagine a new event
must be added. It would be a significant work to manually change the positions
of all the events labels. We use the R software (https://www.r-project.org)
to “automate” the process that leads to the figure. The visual.R script, for
example, produces figure 4.1. It takes as input two text files: visual.txt

https://www.r-project.org


6.2. JAVADOC 83

and items_in_main_loop_black.txt. The first one contains metapost drawing
commands for all the elements except the events descriptions (the sun rays).
This file has to be edited to include new such elements. The second file lists the
labels of the rays (note, they are in inverted order and include LATEXcommands).
The R script loads the list from the file, computes the angle between rays and
produces metapost command to draw the labels. All the metapost drawing
commands are written in the visual.mp file. The R script also takes care of
running metapost on this file. At the end of the day, to modify the figure one has
to edit one of the text files and run the script in R. The same process applies
to the production of figure 4.3. The file involved here are visual1.txt and
items_in_main_loop.txt and the R script visual1.R.

6.2 Javadoc

From Repast project menu, choose Generate javadoc. Select gabriele from the
list. Modify the destination folder to <path to repast workspace>/gabriele/docs

if needed and click on finish.

6.3 Unified Modeling Language (UML)

6.3.1 Class diagrams

Class diagrams can be generated directly from the code by using the umlgraph.1

As trated in the umlgraph installation page: UmlGraph needs to be post-
processed with the Graphviz dot program. Therefore, to draw class diagrams
with UmlGraph class you will need to have javadoc and Graphviz2 installed on
your computer.

First install the graphviz software. Now you should have the dot command
available in your system.

Now download the umlgraph and note down the path to its jar file.
There are several ways to use the umlgraph program to generate class dia-

grams. Here we will give hints on how to use it via javadoc.

Documenting a Class

To document a class, the UmlGraph docled have to be used. It is supplied as
the org.umlgraph.doclet.UmlGraph class in the umlgraph jar.

The command to be executed is:

javadoc -d <outputfolder>

-docletphath <path to umlgraph jar file>

-doclet org.umlgraph.doclet.UmlGraph <options> <javafile with complete phath>

1https://www.spinellis.gr/umlgraph/
2http://www.graphviz.org

https://www.spinellis.gr/umlgraph/
http://www.graphviz.org


84CHAPTER 6. PRODUCINGDOCUMENTATION: LATEX, JAVADOCANDUML

See the umlgraph documentation for options.3 As a first hint, the -all

option is perhaps the best one in case you are documenting a single class.

The command will generate a graph.dot file inside the outputfolder you
specified with the -d option.

Now, you have to run the dot on the graph.dot file to obtain a picture of
the class diagram.

dot -T<outputformat> -o<outputfilename> graph.dot

As an example,

dot -Tjpg -otmp.jpg graph.dot

produces the tmp.jpg file.

The following figure gives an idea of the outcome. It is obtained by running
UmlGraph on the Government.java file

Documenting packages

To document classes in packages and the relationships among them, the UmlGraph
docled has to be used as above but with different inputs.

The command to be executed is:

javadoc -d <outputfolder>

-sourcepath <path to the packages source files>

-docletphath <path to umlgraph jar file>

-doclet org.umlgraph.doclet.UmlGraph <options> <packages separated by a white space>

See the umlgraph documentation for options. As a first hint, the -all

option should be avoided while the inferrel should be used to highlight the
relationships among classes.

As above, the command will generate a graph.dot file inside the outputfolder
you specified with the -d option.

Post process the file with the dot program as explained above to obtain a
picture.

The following figure gives an idea of this process outcome. It is obtained by
running UmlGraph on the gabriele, gabriele.agents, gabriele.institutions

packages

3https://www.spinellis.gr/umlgraph/doc/cd-opt.html

https://www.spinellis.gr/umlgraph/doc/cd-opt.html


6.3. UNIFIED MODELING LANGUAGE (UML) 85

6.3.2 Integrating javadoc with UML class diagrams

The UmlGraphDoc docled has to be used instead of the UmlGraph doclet to
integrate javadoc output with UML graph showing the relationships of a class
with the rest of the code .

The command to be executed is:

javadoc -d <outputfolder>

-sourcepath <path to the packages source files>

-docletphath <path to umlgraph jar file>

-doclet org.umlgraph.doclet.UmlGraphDoc <options> <packages separated by a white space>

Among the available options, -collapsible is perhaps one worth to be
supplied.

It inserts in the java documentation the button .
When clicked, the graph showing the relationships of the Class with the

other classes is showed.

6.3.3 Activity diagrams

Activity diagrams are used to describe how the code implements simulations
events.



86CHAPTER 6. PRODUCINGDOCUMENTATION: LATEX, JAVADOCANDUML

An activity diagram is build for each one of the item reported in figure 4.1.
These diagrams are gathered in the gabriele/docs/umldoc folder.

When a developer add an event, s/he is asked to provide the diagram for
the event and integrate it in the current documentation.

The existing diagrams were made using The Umlet software. The software
comes in two version: the stand alone and the eclipse integration. Hereafter
we will provide instructions on how to make new diagram with the stand alone
version.

The Umlet graphical user interface is displayed in the following figure

Select the UML Activity - All in one item from the top-right corner drop
down menu as shown in the following screen shot



6.3. UNIFIED MODELING LANGUAGE (UML) 87

The top-right frame of the window changes as displayed hereafter

Double click on the start item inside the top-right frame. This will modify
the other two frames of the window as follows:



88CHAPTER 6. PRODUCINGDOCUMENTATION: LATEX, JAVADOCANDUML

Now, the diagram displayed in the left frame can be integrated by typing in
the bottom-right frame. As an example, we report the following figure



6.3. UNIFIED MODELING LANGUAGE (UML) 89

The text to be supplied is a pseudo code written using Umlet syntax. Using
this tool, the user is able to produce the graph which shows how the action is
implemented in the code. As an example, we report hereafter the diagram for
the activateOfficeForLabor action.


	List of variables
	List of Parameters
	I Setting up GABRIELE
	Standard Installation
	Installation
	Java Development Kit (JDK)
	Repast Simphony (RS)
	GABRIELE

	Testing the Installation
	Setup the data loader
	Running GABRIELE


	Streamlined Installation
	Installation
	Java Development Kit (JDK)
	Repast Simphony (RS)
	GABRIELE

	Testing the installation
	Configuration
	Running GABRIELE



	II Understanding GABRIELE
	The components of the system
	Agents
	Goods
	Financial assets

	The Dynamics of Events
	Initialization
	Consumers initialization
	Firms initialization
	Banks initialization
	Government and the Central Bank
	Conclusions
	Technical documentation

	The main loop
	The process that leads to the consumption of what has been produced
	Example of consumer-banks relationship
	The process that leads to production
	Examples of firm-bank relationship



	III Modifying and developing GABRIELE
	Modifying the code
	Learning the current state of development

	Producing documentation: LaTeX, javadoc and UML
	LaTeXdocumentation
	Additional lists in the table of contents
	Figures

	Javadoc
	Unified Modeling Language (UML)
	Class diagrams
	Integrating javadoc with UML class diagrams
	Activity diagrams




